
Getting Up and Running the 𝜆-Calculus

GEORGE(S) ZAKHOUR

Abstract (Spoiler Alert) — Programmers, developers, and coders suffer from a myriad of issues pertaining to their

health. These can vary from eye redness to repetitive strain injuries and a diminished life expectancy. A common

exercise that software practitioners can engage in to reduce these health averse conditions is to be in the outdoors

and to move—by means of walking or running—longer. Alas, professionals are hesitant to pursue their physical and

mental well-being as that sacrifices productivity and programming-derived joy.

In this paper, we address this problem through the lens of programming languages and provide a solution

that greases the friction between outdoor activities and programming. Through the insight that humans leave a

trace while moving and the observation that apparatuses to record such traces are ubiquitous, we formalize an

encoding of the 𝜆-calculus in those traces. We develop an alternative front-end to Church’s language which we call

Poololoop and we provide a reference compiler that produces Haskell and Scheme code. We evaluate Poololoop on

two use-cases that we ran and show that the compilation runs in a few milliseconds.

CCS Concepts: • Social and professional topics → Computing occupations; • Human-centered computing →
Interaction techniques; • Theory of computation→ Formalisms; Grammars and context-free languages.

Additional Key Words and Phrases: 𝜆-calculus, Programmer Health, Runtimes

1 INTRODUCTION
The attentive reader would have noted that computers and the Internet are ubiquitous. For the clueless

reader: in the 2010s, 3.04 billion personal computers were shipped [33] in part to the 5.35 billion Internet

users [20]. Those—the PCs—are being comandeered, in 2024, by an estimated 28.7 million software

developers [19], showing that they too—the software developers—are ubiquitous.

Popular Programming Plagues. It is not too uncommon to witness a plethora of software engineers

and programmers shuffle this Earth bemoaning their bad health. Luria [48] collected the death notices

published in Science between 1958–1968 and found that the mean age at death of male engineers is 71.1

(N=192) and that of women was 82 (N=1). For both reported genders it was found that archeologists

survive engineers: 76.7 for men (N=12) and 84 for women (N=1). In their longitudinal study on life

expectancy by occupation, Luy et. al [49] found that in the 1990s the probability of German men in

technical occupations such as engineering and maths aged between 40 and 60 of surviving is 89.5%

(N=364) while that of German women in the same occupation is 91.7% (N=56). And similarly to the

previous study, men in Social service and education’s probability of survival is 90.9% (N=159) and that

of women is 93.9% (N=172). While these numbers include software engineers they also include other

professions that require their practitioners to wither a lifetime on a desk. Nonetheless these numbers

show that professions that require being outdoors, weathering the elements, have their practitioners

live longer. For instance mucking about in the mud [84] will grant the mucker 2–5 more years as well

as the opportunity to uncover ancient teeth, rusty Victorian trash, Roman garbage, and large feathered

reptiles
1
.

Statistics reporting on the life expectancy of software engineers are scarce. Nonetheless, Postamate

reported that “software engineers have a life expectancy of only 55 years, compared to 78 years for the

general population” [27]. The website, whose slogan is “Home of Satire and Sarcasm”,
2
proceeds to ask

why software engineers die so early without delivering a satisfying answer.

1
The reader is recommended the article by Gartley [32]—by which we mean the article written by Gartley and recommended by

the author(s), and not recommended by Gartley, although the author(s) find it hard to believe that Gartley would not recommend

Gartley’s article for it is a good article—for some dank dinosaur memes.

2
A note to the editors: commas and generally any punctuation sign, will go outside quotations and parenthesised sentences.

Yet, because programming, coding,
3
and software engineering are sedentary jobs they come with a

myriad of related health issues. Chief among the Repetitive Stress Injuries that programmers must deal

with is Carpal Tunnel Syndrome: the professionals suffering from CTS are dominantly programmers,

system administrators,
4
and IT professionals [1, 80, 81]. Other musculoskeletal problems include pain

and stiffness in the neck among 48.6% of computer professionals, in the lower back (35.6%), and in the

shoulders (15.7%) [81].

Sedentary jobs present an uncountable number of other issues: (1) vision blurring (13.2%), (2) irritation

in the eyes (18.6%), (3) watering of eyes (23.2%), (4) pain in the eye (25.7%), (5) burning in the eye (29.8%),

and (6) headaches (29.2%) [81].
5

In summary, it is surprising that nerds—software developers—suffer from so many illnesses that can

be avoided if they could just go outside and have a walk.

Problem Statement. The main activity of software developers is to develop software [68] through

software development languages [68]. With the exception of very few languages discussed in Section 7,

these are primarily developed to be written using a so-called full-size keyboard consisting of somewhere

between 101 and 105 keys resting on a desk and read—the programs expressed in the programming

languages that is and not the keys—on a computer monitor beaming every character onto the reader’s

cornea at a generous 120Hz. The author(s) believe that this overly constrained development environment

is the direct cause of the software developer’s overly restrained physical posture.We address this problem

at its very core by designing a programming language that will not have negative health effects on its

user.

Solution. By rethinking how programs are expressed and by deconstructing the syntax used to express

these programs the author(s) present a language whose syntax is the path left behind by a technophile

walker, hiker, runner, or cyclist
6
. These activities are predominantly done in the outdoors and are often

recorded passively through a smartwatch or a smartphone. The programming language, Poololoop,

leverages the twists and turns in the recorded path to express programs.

The main benefits of using Poololoop are thus:

(1) The eyes are free to observe Nature and wildlife, eliminating the need for the 20-20-20 rule
7
,

(2) The hands and fingers are free to be relaxed,

(3) The body is exposed to natural sources of vitamins such as the Sun—being an example of a

source and not a vitamin—,

(4) The user’s partner is free to believe that the user took time off work to hang around.

By developing a programming language to solve this problem the author(s), expert(s) in the domain

of programming languages, abide by Maslow’s principle: if the only tool you have is a hammer, it is

tempting to treat everything as if it were a nail [51].

Paper Structure. In Section 1 we motivate the problem. So if you have not been motivated already

then reread Section 1 until you are. In Section 2 we present the necessary background on programming

languages and running. In Section 3 we describe the language; its high-level ideas and its formalism. In

There is nothing you can say that will convince me otherwise. The compromise I offer is to typeset the comma, or period, directly

under the quotation signs. Something like “this”, or “that”.

3
Similarly to Footnote 2, the Oxford comma is another hill I am willing to die on.

4
The American editors are seething and malding right now.

5
You know that feeling you get after reading a long list of symptoms? The burning in the eye, the tingling in the fingers, the

shooting headache, the slight dizziness... That feeling that these symptoms creep up on you one by one and the conclusion your

mind draws is that you must be suffering from those symptoms? The author(s) feel that this is happening to them as they are

typing. But let’s not forget that the author(s) are computer professionals and they might be exhibiting actual symptoms.

6
While the techniques presented here apply to all four activities the paper will only focus on the runners and walkers.

7
Every 20 lines-of-code take 20 minutes to update 20 dependencies.

Section 4 we provide code examples from the Poololoop standard library. In Section 5 we discuss the

implementation of the compiler. In Section 6 we showcase two use cases where Poololoop was used in

real-life. In Section 7 we discuss the related work. And in Section ?? we do not conclude in solidarity

with McCann [53] who recommends that SIGBOVIK bans conclusions.

2 BACKGROUND
In this section we describe the necessary background that we assume the reader is ignorant of.

2.1 Running
Running is not only an action that programs do. Running is an action that many things do, probably

too many things, as it has the most number of meanings in the Oxford English Dictionary [89]. The

first definition, I.i.1.a, in the dictionary states that running, when applied to mammals—which humans

are—is the act of moving rapidly on alternating feet—otherwise it’s just hopping—while never having

all appendages simultaneously on the ground. The second definition, V.79.d.i is the one familiar to most

serious programmers. In this paper we adopt both definitions and disambiguate them where needed by

explicitly mentioning whether a program is to be ran, or a human—author(s) included—is to be doing

the running.

Scientifically, running has been the object of study as old as Science8. Famously, in 2010, Keller, a

scientific-mathematical human runner [50], solved the long standing problem of the Jogger’s Pony-
tail [42]: a phenomenon observed by the running community where a jogger’s ponytail sways from

side-to-side while her head bobs up-and-down. And in 2002 the answer to whether one should run or

walk in the rain has been proposed by Bailey [7].

Technologically, running has been commoditized under Sport Business [71]. Unsurprisingly for readers
in the first quarter of the twenty-first century, social networks

9
for runners exist. The leading platform

is Strava [78] where runners connect with other runners. Each runner’s run is traced on a geographic

map and their bio-stats plotted on colorful graphs. Runners can give each other kudos—a digital signal
meant to deliver a rush of serotonin in the receiving runner’s brain—for runs that they have done. They

can—optionally—comment—optionally—motivating messages on runner’s runs, and they can tag other

runners who ran with them a run.

Digitally, runs and the act of running is encoded in multiple format. The most popular format is the

open GPS Exchange Format (GPX) [85] which is an extension of the XML file format [72] that is meant

to be human-readable
10
. Most electronic tracking devices, colloquially smart devices, that record runs

do so in a GPX format. The GPX file format consist of multiple tracks (<trk>) each with its own name.

Each track is composed of track segments (<trkseg>) defined by a sequence of points (<trkpt>)
defined by their geo-coordinates (lat and lon) attributes and optional fields such as the elevation

(<ele>). Below is a small example demonstrating the GPX file format:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <gpx creator="" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.topografix.com

/GPX/1/1 http://www.topografix.com/GPX/1/1/gpx.xsd" version="1.1" xmlns="http://www.topografix.com/GPX/1/1">
3 <trk>
4 <name>Run, rabbit, run. Dig that hole, forget the sun.</name>
5 <type>running</type>
6 <trkseg>
7 <trkpt lat="51.53707" lon="-0.18343"><ele>37.0</ele></trkpt>
8 <trkpt lat="51.53712" lon="-0.18333"><ele>37.0</ele></trkpt>
9 </trkseg>

8
Not to be confused with the prestigious Science scientific journal

9
Readers in the last quarter of the twentieth century may be more familiar with that social phenomenon where every activity has

its own glossy magazine.

10
Where human is not well defined.

10 </trk>
11 </gpx>

2.2 𝜆-calculus
The 𝜆-calculus has been called the “smallest programming language” by some

[whom?]
. It was introduced by

Alonzo Church in 1932 [14] as a new foundational theory of logic and mathematics. Concurrently, Alan

Turing introduced in 1936 the Turing Machine [87]
11
to show that it is not possible to resolve Hilbert’s

1928 Entscheidungsproblem that asks whether a general algorithm exists to prove any mathematical

proposition. While Turing has broken into the mainstream, having his own movie—meaning a movie

where he is portrayed rather than written or directed or produced by Turing
12
—published in 2014

starring the movie heartthrob and English sweetheart Benedict Cumberbatch as Turing himself [55],

Church saw no such treatment.

Besides the 𝜆-calculus, Church is commonly recognized among the nerd community through the

Church-Turing thesis. Luckily for Church his name came first in the thesis’ name because C, which

happened to be the first letter of Church, comes earlier in the alphabet than T, which also happened to

be the first letter in Turing [25]. Church was also first
13
in showing that the Entscheidungsproblem is

not possible to solve [15].

2.2.1 Syntax. The 𝜆-calculus is the mother of all functional languages. Its one and only feature are

functions. What do we do with functions? (1) We create them, (2) we give their arguments name, and

(3) we apply them to something, i.e. we replace names with other things.

So all expressions in the 𝜆-calculus have one of the following three shapes.

(1) Abstraction: Take an expression, find your favorite sub-expression, keep it in your pocket and

replace it with a variable, then wrap the whole expression in a syntactic form that says that

variable should stand for something.

(2) Variable: That thing you replace your favorite sub-expression with,

(3) Application: The way you say that a variable stands for your favorite sub-expression.

Formally though, expressions are denoted with the symbol e and they are described by a grammar,
which is just the type of the syntax tree. Anyways, the 𝜆-calculus expressions are described by this

self-explanatory grammar:

e ::= 𝜆𝑥.(e) | 𝑥 | (e1 e2)
In practice, programmers are familiar with the 𝜆-calculus if they have written in a Lisp-like dialect,

Haskell, Scala, F#, or some other functional language. Below we address three common criticism against

the 𝜆-calculus.

ThErE aRe ToO mAnY pArEnThEsEs. No. You’re used to calling functions like this, f(x, g(y)), right?
The 𝜆-calculus not only eliminates those useless commas, it gets rid of one pair of parenthesis! It simply

moves the parentheses one token to the left to become (f x (g y)) and removes the outermost ones

to become f x (g y). But wait, there’s more. To eliminate more of these pesky parentheses we adopt

two conventions: 𝜆 associate to the right and applications to the left. What does this mean? It means

that 𝜆𝑥 .(𝜆𝑦.e) becomes 𝜆𝑥 .𝜆𝑦.e and (e1 e2) e3 becomes e1 e2 e3. For example: 𝜆𝑥.𝜆𝑦.𝑥 𝑥 𝑦 𝑦 stands for

𝜆𝑥.(𝜆𝑦.(((𝑥 𝑥) 𝑦) 𝑦)). Neat, no?
11
Turing did not call the Turing Machine the Turing Machine because Turing was humble, it was Church who dubbed Turing’s

machine: Turing Machine.

12
The author(s) are not aware of any movie that Turing wrote, directed, or produced

13
The author(s) choose to conveniently sweep the Gödel debacle under the footnote line. Kurt Gödel, the archetypical Austrian—

archetypical not being a qualifier for Austrian—nerd proved that the Entscheidungsproblem cannot be resolved in 1931 [34].

Everyone was aware of Gödel’s result and it is acknowledged by Church and Turing.

I cAn’T pRoGrAm WiThOuT nUmBeRs, ClAsSeS, aNd ObJeCtS. You don’t need them bro. You just need

these three syntactic forms to write any program. Booleans? They’re functions. Numbers? They’re

functions. Classes and objects? They’re the poor man’s closure [16]. Closures? They’re just functions.

In Section 4 we’ll show you how you can do it too.

WhErE ArE ThE mUlTiVaRiAtE fUnCtIoNs? They don’t exist. You know why? Cause they’re useless.

Just Schönfinkel them [67, 70] my dude. A function that takes two things is a function that takes the

first thing and returns a function that expects the second thing. This fact can be recalled with this

mnemonic rhyme:

Many arguments are mere ornaments.

With higher-order languages, ordure

as these can be teased out with such an ease:

Make 𝜆s take one, which when asked to run,

returns another expecting the other,

until no more can arguments dwindle.

Congrats. Now you know how to Schönfinkel.

Or you could bundle your arguments in a pair. But guess what? Pairs are also just functions.

2.2.2 Semantics: What does it all mean? So now you know how to write 𝜆 programs. How do you run

them? You use the relation e → e′ which can be read as “e becomes e’ after a single step”. This style is
conveniently called small-step semantics because it invites the evaluator to behave like a CPU and to

operate in discrete units commonly known as clock-cycles.

The→ relation is defined through a single rule: the 𝛽 rule. That’s the only
14
rule

15
you will ever need.

Do you see now why it’s the “smallest programming language”? The 𝛽-rule looks like this:

(𝜆𝑥 .e1) e2 → e1 |𝑥e2 (𝛽)

Where the notation e1 |𝑥e2 is the capture-avoiding substitution [77]. We could define it, or we could do

what every other programming language does and show you examples.

(𝑎𝑑𝑑 𝑥 𝑑) |𝑥
𝑎𝑑𝑑 𝑎𝑑

= 𝑎𝑑𝑑 (𝑎𝑑𝑑 𝑎 𝑑) 𝑑

(𝜆𝑦.𝑠𝑢𝑏 𝑥 𝑏) |𝑥
𝑠𝑢𝑏 𝑢 𝑏

= 𝜆𝑦.𝑠𝑢𝑏 (𝑠𝑢𝑏 𝑢 𝑏) 𝑏

(𝜆𝑥.𝑓 𝑜𝑜 𝑥) |𝑥𝜒 = 𝜆𝑥 .𝑓 𝑜𝑜 𝑥

This again, is all you need to do any computation. In other words, this model: the three syntactic

forms and the 𝛽 rule is all you need to write Linux and Clang which you can then use to program a

simulator of a Turing Machine. However unlike Linux, the 𝜆-calculus does not require files, and unlike

Clang it’s not developed by a group, and unlike Turing Machines there are no tapes. What’s common

across them? The state. Church, by inventing the 𝜆-calculus, stated computationally and constructively

the separation between Church and state
16
.

14
That’s only one if you consider—which the author(s) do—the weak-head normal form evaluation strategy. You can ignore these

words, it’s beyond the scope of this paper.

15
That’s not really true. The first giveaway is the rule’s name. You would think that if there’s a 𝛽 , then there’s an 𝛼 . This is also

not entirely true as there is also an 𝜂. The 𝛼 rule just renames some variables, which you might need to do in some cases when

free—as in freedom, not as in free beer—variables are involved. The 𝜂 rule is at best a compiler optimization.

16
This joke is paraphrased from Guy Steele: “And some people prefer not to commingle the functional, lambda-calculus part of a

language with the parts that do side effects. It seems they believe in the separation of Church and state. :-) :-) :-)” [76]

Variables Begone! In 1972, the iconic Dutch composer Louis Andriessen composed de Volhard-

ing [4, 8]
17

which lead to the creation of the eponymous minimal jazz group de Volharding [24].

This event signaled the climax of the minimalism movement in Europe [9]. In 1972, the Dutch computer

scientist Edsger W. Dijkstra delivered EWD340 as his Turing Award acceptance speech [26] in which he

announced that he was the first Dutch to register as programmer. In 1972, the Dutch mathematician

Nicolaas Govert de Bruijn published Lambda Calculus Notation with Nameless Dummies [21] which
combined both minimalism, programming, and signaled the end of logical minimalism and computer

design [23]. With his seminal paper, the visionary de Bruijn foresaw and solved half of the problem now

attributed to Phil Karlton: “There are only two hard things in Computer Science: cache invalidation and

naming things.” [22, 30, 40]. By completely removing the need for variables in the 𝜆-calculus de Bruijn

resolved the latter problem [3] back in the 70s.

How did he do it? de Bruijn observed that in programs without free—as in freedom—variables variables

are just “pointers” to wherever they were bound or declared. For example, 𝜆𝑥.𝜆𝑦.𝑥 can be said to be

the lambda that returns a lambda which returns the variable bound by the lambda two levels before.
Coincidentally, 𝜆𝑎.𝜆𝑏.𝑎 is the same lambda that returns a lambda which returns the variable bound by

the lambda two levels before. So in de Bruijn notation we express them as 𝜆𝜆2. This notation is dubbed

de Bruijn indices
18
and is the one we will use throughout the paper.

To get the reader used to this notation, we will list some lambda expressions and their de Bruijn

indices in the following. The identity function 𝜆𝑥 .𝑥 becomes 𝜆.1. The constant function 𝜆𝑥.𝜆𝑦.𝑥 becomes

𝜆𝜆.2. The application function 𝜆𝑓 .𝜆𝑥 .𝑓 𝑥 becomes 𝜆𝜆.2 1. This function 𝜆𝑥 .(𝜆𝑓 .𝑥) 𝑥 becomes 𝜆.(𝜆.2) 1.

3 THE DESIGN OF POOLOLOOP
Poololoop, pronounced [pu:l@Ulu:p], is a portmanteau [88] of “Pool of loop”.

The main construct that Poololoop exploits for its syntax is the loop, or that which is colloquially

called a circle by the general population who failed their basic geometry class and forgot that a circle

has a constant radius. This choice is motivated by three reasons.

First, humans naturally walk around in circles [74], thus the user does not need to concentrate on the

syntax and can rather spend their energy on the problem at hand. A feature that hardly any modern-day

programming language enjoys.

Second, The programs naturally become small in diameter. The user does not need to stray far away

from home and venture into foreign environments. This has the positive outcome of avoiding taking

any unneeded risk that may trigger separation anxiety in users.

Third, loops make Poololoop future proof. Mastroianni et. al [52] and others [47] proved that the past

was better. It thus follows that the function describing the quality of time is a monotonously decreasing

function. The trivial corollary states that the future will be worse. Of the multiple proposed models

describing the future, two dominate [44]: the Orwellian [59] and the Huxlerian [37]. In what follows we

argue that Poololoop fits snugly in both models.

The Orwellian model predicts a general increase in user monitoring and language moderation by

lifting the principle of least privilege [69] from software development into efficient social organization. In

this realm, a successful language must cater not only to its users but also to Big Brother. Proponents of the

Orwellian model justify it by offering the following argument. In 2023, 31.17% (N=59,
19
336) of software

developers reported working for companies with a workforce of larger than 500 employees [75]. The law

17
Dutch for perseverance. The author(s) recommend that the reader play this composition and read the remainder of the paper

while listening to it.

18
Not to be confused with de Bruijn levels

19
For the editors from continental western Europe: this comma is a thousands separator and not a decimal separator. I’m sorry

that your language is not so relevant scientifically anymore.

of large numbers—and one may not need to invoke this law to make a strong argument—implies that

many programmers will have to work under surveillance-friendly conditions [2, 10, 38]. In this setting

Big Brother subordinates shall not employ Poololoop as prescribed as that may give thewrong impression

that the now-healthy workforce, coming back from a hard day’s work in Nature
20
[41, 57, 58, 61] using

Poololoop, showing signs of happiness and good mental health may be confused with an idle workforce

loitering around the coffee machine all day. Thus a more consistent employment of Poololoop in the

Orwellian model is one where the programmers are lead in file to the underground parking lots, away

from sunlight and under the infrared glow of night-vision-enabled surveillance cameras, to write their

programs in the oppressing underground stale air. In such a space, without exploiting loops, the space

of programs that can be expressed becomes too limited to be useful.

The Huxlerian model predicts an intoxicating increase in developer tooling with excellent user

experience and a deluge of mind-altering technologies
21
that will boost the productivity of programmers.

In that model, for programmers to use a tool, it must be an addictive one. Utilizing Poololoop in the

great outdoor will help greatly in improving the mental state of the programmer. Thus, an excess use of

Poololoop has the benefit of increasing the user engagement. Moreover, it has been shown that runners

and walkers in Nature do feel a sense of connection with natural entities and a sense of yearning to

revisit them [12, 29, 65]. Hence, a use of Poololoop naturally leads to an excessive use which leads to

unprecedented levels of programmer satisfaction, which according to the Huxlerian model, must lead

to an increase in output and productivity.

3.1 Syntax
Poololoop is an alternative front-end to the 𝜆-calculus with de Bruijn indeces as presented in Section 2.2.

To that extend, we present the front-end to the three syntactic forms of the untyped 𝜆-calculus: variables,

functions, and function applications.

We start by distinguishing between the language Poololoop and the formal mathematical system

underlying the language. The equivalent of the expressions 𝑒 of the 𝜆-calculus are the loops ì of .

To define the language we define in Section 3.1 the loop-encoding of 𝑒 , L𝑒M : 𝜆 → , which translates

expressions into loops. The actual definition is by cases on the 𝜆-calculus syntactic forms and is split

in Definitions 3.1 to 3.3. And in Section 3.2 we define the untangling of ì, JìK : → 𝜆, particularly in

Definition 3.4, which translates loops back into expressions.

3.1.1 Variables. When we use de Bruijn indeces, variables will always be represented as natural

numbers
22
. It is worth noting that we do not consider zero to be a natural number. Therefore quite

naturally we denote a variable 𝑛 by 𝑛 consecutive empty loops.

Definition 3.1 (Variables). A variable 𝑛 is loop-encoded as the loop wrapping 𝑛 empty loops as follows:

L𝑛M =

...

Repeated 𝑛 times

20
Not to be confused with the prestigious Nature scientific journal.

21
Exemplified by conversing with computers that pass the Turing test.

22
In 1889 Giuseppe Peano published Arithmetices Principa [62] in which he presents the defacto agreed-upon axiomatization of

the natural numbers. The first axiom is verbatim 1 ∈ 𝑁 (sic). Implying that zero is not a natural number. However, in his 1901

Formulario mathematico [63] he realizes his mistake and includes zero as a natural number and the first axiom of his formalism

3.1.2 Functions and Applications; Introduction and Elimination; Yin and Yang. Functions are non-empty

loops that contain the loop-encoding of their body and applications are non-empty loops that contain

the components of the application. This creates a lovely correspondence between the syntactic class of

an expression and the number of elements in its outer loop: nothing is a variable, one thing is a function,

and many things is an application. Sadly we can’t have nice things, so we introduce the directionality

of the loop. The direction of the loop is formally the direction in which the loop turns. In practice this

corresponds to time, and since loop-encoding is not a distributed system then time is a well-defined

pre-order lattice with a complete total ordering [43]. Since introduction, or building, generally has

a positive connotation and elimination, or destruction, has a negative one then a functions’ loop is

positive and an application’s loop is negative.

To that end, functions and applications are formally defined as follows:

Definition 3.2 (Function). A function whose body is 𝑒 is defined to be a positive (clock-wise) loop

wrapping the loop-encoding of 𝑒 .

L𝜆.𝑒M =

L𝑒M

Definition 3.3 (Function Applications). A function applications whose function is 𝑒1 and arguments

are 𝑒2 · · · 𝑒𝑛 is a negative (clock-wise) loop wrapping the loop-encoding of all its components.

L𝑒1 · · · 𝑒𝑛M = L𝑒1M

...

L𝑒𝑛M

3.1.3 A Note on the Choice of Direction. The directionality of loops came to the author(s) as they

showered [18, 39, 60]. While thinking about the loop-encoding of lambdas, the author(s) were observing

the little water tornadoes that the water did as it swirled down the drain and after a Eureka moment they

assigned the positive direction to lambdas. As the author(s) live in the northern hemisphere and wish to

avoid exhibiting any north-south bias, we flip the directionality of functions and applications based

on whether the program was ran in the northern hemisphere or the southern one. This hemispherical

distinction in directionality has been introduced by the French mathematician Gaspard-Gustave de

Coriolis [17] and popularized by Archer, Oakley and Weinstein [83]. As runs could start, end, and cross

the equator, we leave the question of deciding the choice of directionality for future work.

3.2 Formal Semantics
Formal semantics in the theory of programming languages are split into two parts: static semantics,

fancy for semantics at compile-time, think type systems, and dynamic semantics or runtime behavior.

As Poololoop is untyped then static semantics are not relevant here. And since Poololoop is a front-end

for the untyped 𝜆-calculus then its dynamic semantics are exactly those of the 𝜆-calculus with de

Bruijn indeces, i.e. the weak-head normal form evaluation strategy with the 𝛽 rule in Equation (𝛽). This

evaluation strategy is functional, i.e. given a reducible expression 𝑒 there is a unique 𝑒′ such that 𝑒 → 𝑒′.
This observation motivates the colimit commutative diagram

23
definition in Figure 1 for the functional

evalution⇝ at the -level and the untangling JìK function, which in practice is the compilation relation.

becomes 0 ∈ 𝑁 . To those who define the natural numbers informally as the counting numbers: how many fingers am I holding

up if I hold up my fist? It has been 123 years already since Peano’s correction, so of course zero is a natural number.

23
Which is otherwise quite useless.

𝜆 𝜆

J·KL·M

→

⇝

Fig. 1. The diagram describing the semantics with respect to 𝜆 semantics

For the readers who are not versed in diagram notations, we simply mean the following: given the

encoding function that “decompiles” and the underlying runtime that makes one step then it is pos-

sible to define (uniquely) the compiler and the interpreter (higher-level runtime) such that 𝑒 → JL𝑒M⇝K.

In Definition 3.4 we define the compilation function of a loop ì into a 𝜆-calculus expression.

Definition 3.4 (Compilation). We define the compilation of a loop ì in by cases:

u

wwwwww
v ...

Repeated 𝑛 times

}

������
~

= 𝑛

u

w
v

ì

}

�
~ = 𝜆. JìK

u

www
v

ì1

...

ì𝑛

}

���
~

= Jì1K · · · Jì𝑛K

With Definitions 3.1 to 3.4 we can formulate Theorem 3.5 which expresses the expected fact that

untangling and loop-encoding are inverse operations.

Theorem 3.5. Loop-encoding and untangling are inverse operations. In other words, for every loop ì in
then ì = LJìKM, and for every 𝜆-calculus expression 𝑒 then 𝑒 = JL𝑒MK.

Proof. Like most theorems in the domain of programming languages [5, 13, 45], the proof is a trivial

application of structural induction. □

Defining the interpreter⇝ is also not difficult but requires the author(s) to typeset many complicated

diagrams.

Definition 3.6 (The⇝ interpreter). The definition is left as an exercise to the reader.

4 PROGRAMMING IN POOLOLOOP
4.1 Church Booleans
To construct a boolean one of the two boolean constructors must be used: true or false. Thus the church

encodings of booleans will always have two outer lambdas, one for each constructor.

True. The boolean true value is encoded as 𝜆𝜆.2. Informally, the first lambda asks its user for what is

meant by true, and the second asks for what is meant by false. The expression then returns the true

value provided by the user. Its loop-encoding in is the following:

All loop examples are to be read from the top-left corner, traveling along the entire loop continuously

without breaking smoothness, until the top-right corner is reached. The inhabitants of the southern-

hemisphere are instead expected to read the diagram from the top-right corner towards the top-left

corner in a similar fashion.

False. Dually, the boolean false will return the false that the user provided, i.e. false is 𝜆𝜆.1. Its loop-

encoding is the following:

4.2 Church Numerals
4.2.1 Numbers. The Peano encoding of the natural numbers [63] assume two constructors: the zero

24

and the successor function. The zero is then encoded as 𝜆𝜆.125, one is encoded as 𝜆𝜆.2 1, two as 𝜆𝜆.2 (2 1),
three as 𝜆𝜆.2 (2 (2 1)), etc. In we illustrate 0, 1, and 2 as the following diagrams in order from left-to-

right:

4.2.2 Addition. Addition is a fundamental operation [28]. The operation takes two Church numbers

and produces a Church number. Therefore it has two outer-most lambdas for the given numbers, and

two other lambdas for the zero and the successor function. A number 𝑛 is encoded as the application

of the given successor function 𝑛 times to the given zero. Thus, addition of 𝑛 and𝑚 is encoded as the

application of the given successor function 𝑛 times to𝑚 such that the given zero and successor functions

are passed along to𝑚. In other words, the de Bruijn encoding of addition is

add = 𝜆𝜆𝜆𝜆.4 2 (3 2 1) (1)

Whose loop encoding is the following diagram:

24
Here zero is a natural number. This is not be confused with the definition of the natural numbers at the meta-level.

25
The attentive reader would have noticed that the encoding of zero and false are the same. This feature has been added to Church

encodings in order to attract C and Javascript programmers into functional programming.

4.2.3 Multiplication. Just as we re-interpreted the meaning of zero in the addition function to be the

second number to be added, for addition we re-interpret the successor function to addition. Therefore

multiplying 𝑛 and𝑚 becomes 𝑛 additions of𝑚 on a given zero. Thus, by inlining Equation (1), we obtain

the following definition of multiplication

mult = 𝜆𝜆𝜆𝜆.4 (𝜆.4 3 (1 3 2)) 1 (2)

Its loop encoding is the following diagram:

4.3 Fixed Point Operators
The Y-combinator allows recursive and diverging programs to be expressed. It is defined as follows:

Y = 𝜆.(𝜆.2 (1 1)) (𝜆.2 (1 1)) (3)

and its loop encoding is the following:

4.3.1 Recursive Programs: factorial. Now we demonstrate that Poololoop is not a toy programming

language by implementing the factorial function. We implement it using the Y-combinator defined in

Equation (3) and the church numerals. Below is the program in the 𝜆-calculus without de Bruijn indices:

1 fact = (\f. (\x. f (x x)) (\x. f (x x))) -- Y-Combinator Equation (3)
2 \recurse.\n.\s.\z. -- First argument is the recursive call
3 n (_.\T.\F. F) (\T.\F. T) -- is true if n is zero and false otherwise
4 (s z) -- 0! = 1
5 (recurse -- recursive case
6 (n \s.\z. n (\g.\h. h (g s)) (\u. z) (\u. u)) -- MAGIC: predecessor of n
7 s (n s z)) -- the last argument recalls Equation (1)

Using de Bruijn incides, fact becomes:

(𝜆.(𝜆.2 (1 1)) (𝜆.2 (1 1))) (𝜆𝜆𝜆𝜆.3 (𝜆𝜆𝜆.1) (𝜆𝜆.2) (2 1) (4 (3 𝜆𝜆.5 (𝜆𝜆.1 (2 4)) (𝜆.2) (𝜆.1)) 2 (3 2 1)))

And its loop encoding is:

This particular diagram is meant to be read from the bottom-left strand, all the way throughout the

path, until the end of the bottom-right strand. Godspeed.

. . .

𝑣1

𝑣2

Fig. 2. A loop is defined by the intersection point of two vectors 𝑣1 (blue) and 𝑣2 (red) and its—the loop’s—direction
is defined by the same two vectors. The starting point is the empty point in the top-left corner.

5 IMPLEMENTATION
We implemented a compiler for Poololoop in the C programming language

26
. The source code, which is

relatively tiny at 147 lines long is provided in Appendix A
27
. The compiler takes two command line

arguments, and an optional third. The first argument is the path to a GPX file and the second is an

identifier that the compiled code should be assigned to. The optional third argument specifies the target

language to compile to. By default the target language is the Scheme programming language. The other

alternative language is Haskell. The two targets are specified with scm and hs respectively.

The semantics implemented by the compiler is as described in Section 3. The implementation decides

on the directionality based on whether the starting point has positive or negative latitude, i.e. is in the

northern or southern hemisphere respectively.

The implementation abides by Postel’s Robustness law [66], it accepts file formats that supersede

GPX. Informally, Poololoop’s compiler accepts any file that contains a sequence of latitude and longitude

coordinates specified respectively with lat="ieee_float" and lon="ieee_float". The syntactic class
ieee_float is the class of IEEE floats.

Compiling the compiler is as easy as passing it to gcc and linking it with the math library using the

-lm flag. When the compiler is compiled with the -O3 optimization flag, then compiling the two case

studies presented in Section 6 took less than 3 milliseconds on the author(s)’ machine which is just an

everyday laptop that one takes on a holiday. The GPX file of the two case studies contains 509 and 519

GPS points respectively. Section 6 provides the executed commands and their output.

The main observation is that every loop is defined by an intersection point. Thus, find the intersection

point and you will find the loop. The direction of the loop is computed from two vectors: (1) the vector

whose tail and tip are defined by the point just before the intersection point and the one just after,

respectively, and (2) the vector whose tail and tip are defined by the point just before the intersection

point and the one just after, respectively. Figure 2 shows an example of these two vectors, 𝑣1 and 𝑣2,

respectively.

The compiler exploits the key idea that intersection points act as parentheses. Every intersection

point is traversed twice by the runner, on entering the loop and on exiting it. Thus, the compiler finds

the intersection points, sorts them by the time traversed, and treats each pair as a parenthesis: the first

is equivalent to an open parenthesis and the second is equivalent to a closed one. Once this Intermediate

Representation (IR) is generated, then compiling to a de Bruijn indexed 𝜆-calculus IR is equally trivial,

and compiling to Scheme or Haskell is just a boring task at this point.

The compiler uses the naïve 𝑂 (𝑛2) algorithm to find intersections in a piece-wise linear path: it

checks segments two-by-two for intersections. When tried on a GPX file with 13,714 GPS points the

compiler took 291 milliseconds to produce a syntax error
28
.

26
C11, probably.

27
And also as a Gitlab Snippet: https://gitlab.com/-/snippets/3688034.

28
Which is only raised after finding all intersections.

https://gitlab.com/-/snippets/3688034

6 EVALUATION
In this section we show that using Poololoop in real-life is possible. We have chosen two programs

from Section 4 and we ran one program on a large-scale and walked the other on a small-scale. We

report on these two case studies in the following paragraphs.

The first author went on run along the true path on the night of Saturday 9
th
of March 2024. The

GPX track recorded by the author’s smart watch is shown in Figure 3a. The running distance was 4.48

kilometers long
29
at the respectable pace of 5 minutes and 35 seconds per kilometer

30
and the running

time was around 25 minutes and 5 seconds, which is almost exactly the same length as de Volharding
31
.

The engine running the program was indeed exposed to that composition as they were running the

program. Therefore one thread of validity to this case study is the choice of music as it might have

affected the pace of the runner and thus the measured run time [11].

The last author’s fix was also done on the night of Saturday 9th March 2024. The path is 2.66 kilometers

long. The author took 46 minutes and 42 seconds to walk it at the shameful pace of 17 minutes and 33

seconds per kilometer. The GPX track recorded by the author’s smart watch is shown in Figure 3b. The

slow pace can be explained by the author’s report that conducting this experiment was tedious and

awkward. They have in fact tried to walk the path in daylight but gave up soon after the first loop as

they have reported feeling an uncomfortable level of awareness exhibiting itself through emotions of

self-consciousness and fear of walking into small and developing humans engaging in a communal and

recreational activity consisting of striking, repeatedly, with a single foot, a round orb thus carrying it off

the ground and potentially into the faces of others—author included. While the author was not disturbed

during the experiment they have received inquisitive looks—even under the cloak of darkness—from

strangers. Thus one thread of validity to this case study are other humans.

Both case studies have been recorded and archived on Strava [31, 78], a popular website where

athletes preserve their artifacts. The tracks are publically accessible
32
alongside multiple plots and a

GPX file which can be fed into the Poololoop compiler.

Below are the benchmarks of the four compilations that the author(s) conduced on the GPX files of

both case studies as produced by the hyperfine benchmark utility [64].

1 > hyperfine "./poololoop gpx/fix.gpx f hs" "./poololoop gpx/fix.gpx f scm" \
2 "./poololoop gpx/true.gpx t hs" "./poololoop gpx/true.gpx t scm"
3

4 Benchmark 1: ./poololoop gpx/fix.gpx f hs
5 Time (mean ± 𝜎): 2.0 ms ± 0.7 ms [User: 1.8 ms, System: 0.4 ms]
6

7 Benchmark 2: ./poololoop gpx/fix.gpx f scm
8 Time (mean ± 𝜎): 1.5 ms ± 1.0 ms [User: 1.5 ms, System: 0.2 ms]
9

10 Benchmark 3: ./poololoop gpx/true.gpx t hs
11 Time (mean ± 𝜎): 1.7 ms ± 0.8 ms [User: 1.6 ms, System: 0.3 ms]
12

13 Benchmark 4: ./poololoop gpx/true.gpx t scm
14 Time (mean ± 𝜎): 1.7 ms ± 0.8 ms [User: 1.6 ms, System: 0.3 ms]

The output of each command is the following:

29
Or 2.78 miles in freedom units.

30
Or 8 minutes 57 seconds per mile in freedom units.

31
Which should be just about done if you started it per Footnote 17.

32𝜆𝜆2 - SIGBOVIK’24 CS#2: https://www.strava.com/activities/10926312841, and 𝜆(𝜆2(1 1))(𝜆2(1 1)) - SIGBOVIK’24 CS#1: https:
//www.strava.com/activities/10925302747. By appending /export_gpx to the URL, the artifact evaluators can download the

GPX file.

https://www.strava.com/activities/10926312841
https://www.strava.com/activities/10925302747
https://www.strava.com/activities/10925302747

(a) The true program as described in Section 4.1 (b) The Y-combinator as described in Section 4.3

Fig. 3. A satellite image of the area where the two programs of the two case studies were ran and walked with
the path superposed on top in a red line. The starting point of the run and walk is indicated by a green dot. The
ending point of the run and walk is indicated by a checkered flag in a white circle.

1 > ./poololoop gpx/fix.gpx f hs
2 f = (\ x0 -> ((\ x1 -> (x0 (x1 x1))) (\ x1 -> (x0 (x1 x1)))))
3

4 > ./poololoop gpx/fix.gpx f scm
5 (define f (lambda (x0) ((lambda (x1) (x0 (x1 x1))) (lambda (x1) (x0 (x1 x1))))))
6

7 > ./poololoop gpx/true.gpx t hs
8 t = (\ x0 -> (\ x1 -> x0))
9

10 > ./poololoop gpx/true.gpx t scm
11 (define t (lambda (x0) (lambda (x1) x0)))

We would like to remind the artifact evaluators that the generated Haskell code of the Y-combinator

cannot be used even though it is syntactically correct. That is because Haskell is strongly typed and the

Y-Combinator cannot be typed in the Simply Typed 𝜆-calculus, nor in System-F. That is no fault of ours.

The generated Scheme code on the other hand is perfectly fine.

7 RELATEDWORKS
As with most novel work such as ours, not much truly related related work exists. Two line of works

nonetheless can be identified. The author(s) hope that by the end of this section the reader would have

realized that none of these completely satisfy Poololoop’s design choices from Section 3.

7.1 Alternative or Assistive Hardware
Augmented Reality (AR) devices which intend to superpose virtual objects on top of real-world objectives

have been around commercially for more than a decade. These could be used to assist programmers in

writing their programs in the great outdoors just as Poololoop does.

The first device that broke into the mainstream is the Google Glass in the early 2010s. It is a wearable

device, just a pair of eyeglasses, with two small transparent glass rectangles covering a part of the user’s

field of vision. By projecting pixels onto these transparent rectangles the user can switch their focus

from real-life into the virtual, and vice versa. But damn do they look dorky [90].

More recent devices, such as Facebook’s Quest and Apple’s VisionPro offer better image quality and

hand-gesture detection. Yet these have two downsides. First, the real-world is seen through a screen

looping back the view from a front-camera. Meaning these devices are virtual reality devices that happen

to mirror the real-world—for now
33
. And second, they sure do look more obnoxious than the Google

Glass.

7.2 Gestural Programming Languages
Gestural Programming is the domain of computer vision and artificial intelligence research where one

teaches a robot how to accomplish tasks by demonstrating to the robot, visually, through the means of

a human, how they are accomplished. This line of work has been explored by Soratana et al. [73] and

Cabrera et al. [54]. But it’s easy to conclude that this is unrelated to Poololoop and is not what we mean

by “Gestural Programming”.

Let’s try again. Gestural Programming is the domain of programming pedagogy where researchers

explore the use of input devices other than the keyboard and the mouse for programming. For example

in Streeter’s PhD thesis [79] the author
34
applied multiple gesture matching algorithms to data recorded

from students programming in Google Blockly with the Microsoft Xbox Kinect. Similarly Toro-Guajardo

et al. [86] reported on young people programming in Scratch using the Nintendo Switch Joy-Cons

and found that they have more fun if they, and their hands, move. While this line of work is closer to

Poololoop than the previous one, it is still unrelated.

One more time. Gestural Programming is the domain of programming language research which

produced bodyfuck [35, 36, 82], a language in which programmers input programs through moving

their bodies. Bodyfuck is an alternative front-end for the popular programming language brainfuck [56]

where the eight brainfuck actions are mapped into eight bodily gestures the programmer performs

facing a visual recording apparatus. For example, if one wishes to increment the register in focus then

one must jump, and if one wishes to decrement it then one must duck. Bodyfuck has been birthed to be

performative art. Fifteen programs were performed and put on display in the Things That Are Possible

MFA Show [6]. It aims to separate the act of software performance, i.e. software inscription
35
from the

computational context in which it happens in. Bodyfuck aims to demonstrate that software inscription

can be done completely outside computers
36
in the surrounding cultural space. Similarly, Poololoop

demonstrates that this inscription can be done completely outside.

This shows that we’re on the right track of identifying actually related related work. Sadly, the

author(s) could not find any other related work in that style. However, the early readers of the SIGBOVIK
publication proceedings may recall the work of Leffert entitled “Harnessing Human Computation:

𝛽-reduction hero” [46] in the 2010 Technical Report track. Alas, the author(s) were unable to find the

Flash application which was reported on nor the report nor its source code in order to learn what the

work is about. Nonetheless we conjecture, based on the name, that it presents a 𝜆-calculus evaluation

technique that is gamified á-la Guitar Hero. Nevertheless if that is the case, then unlike Poololoop,

programming can only be done indoors while staring at a screen.

33
Seriously, imagine the horrors of having that feedback camera attacked.

34
Being the author of Streeter’s PhD thesis and not the author(s) of this very paper you are almost done reading.

35
As the author(s) of this almost-finished paper have no background in academic art they have found the essay cited earlier to be

extremely difficult to read, and they report here their best guess at what it could mean.

36
Also around the year 2010, the first author of this almost-done paper that you are reading recalls writing a whole PHP program

on a piece of paper during a biology class in their senior highschool year as they had no interest in biology and no access to a

computer. This footnote tells the anecdote to show that this separation is natural and to brag that the first author was able to

write a whole PHP application by hand on a piece of paper.

REFERENCES
[1] K. Mohamed Ali and B.W.C. Sathiyasekaran. 2006. Computer Professionals and Carpal Tunnel Syndrome (CTS). Interna-

tional Journal of Occupational Safety and Ergonomics 12, 3 (2006), 319–325. https://doi.org/10.1080/10803548.2006.11076691

arXiv:https://doi.org/10.1080/10803548.2006.11076691 PMID: 16984790.

[2] Seth Allcorn. 2022. Micromanagement in the workplace. Organisational and Social Dynamics 22, 1 (2022), 83–98.
[3] Reem Alsuhaibani, Christian Newman, Michael Decker, Michael Collard, and Jonathan Maletic. 2021. On the Naming of Methods: A Survey of

Professional Developers. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). 587–599. https://doi.org/10.1109/

ICSE43902.2021.00061

[4] Louis Andriessen. 1972. de Volharding. Composition.

[5] Carlo Angiuli. 2017. The Next 700 Type Systems. SIGBOVIK (2017), 169–171. https://sigbovik.org/2017/proceedings.pdf

[6] The Digital Arts and New Media MFA Program at UC Santa Cruz. 2010. 2010 MFA Exhibition :: Things That Are Possible. https://danm.ucsc.

edu/news_events/2010-mfa-exhibition Accessed: March 3, 2024.

[7] Herb Bailey. 2002. On running in the rain. The College Mathematics Journal 33, 2 (2002), 88–92.
[8] World Association For Symphonic Bands and Ensembles. 2021. DE VORHALDING for Piano and Winds (1972) by Louis Andriessen (The Nether-

lands, 1939-2021). https://wasbe.org/de-vorhalding-for-piano-and-winds-1972-by-louis-andriessen-the-netherlands-1939-2021 Accessed:

March 3 2024.

[9] Maarten Beirens. 2016. European Minimalism and the Modernist Problem. In The Ashgate Research Companion to Minimalist and Postminimalist
Music. Routledge, 61–85.

[10] Clive R Boddy. 2017. Psychopathic leadership a case study of a corporate psychopath CEO. Journal of Business Ethics 145, 1 (2017), 141–156.
[11] Robert Jan Bood, Marijn Nijssen, John Van Der Kamp, and Melvyn Roerdink. 2013. The power of auditory-motor synchronization in sports:

enhancing running performance by coupling cadence with the right beats. PloS one 8, 8 (2013), e70758.
[12] Stefan Brené, Astrid Bjørnebekk, Elin Åberg, Aleksander A Mathé, Lars Olson, and Martin Werme. 2007. Running is rewarding and

antidepressive. Physiology & behavior 92, 1-2 (2007), 136–140.
[13] Robert Chatley, Alastair Donaldson, and Alan Mycroft. 2019. The Next 7000 Programming Languages. Springer International Publishing, Cham,

250–282. https://doi.org/10.1007/978-3-319-91908-9_15

[14] Alonzo Church. 1932. A Set of Postulates for the Foundation of Logic. Annals of Mathematics 33, 2 (1932), 346–366. http://www.jstor.org/

stable/1968337

[15] Alonzo Church. 1936. A note on the Entscheidungsproblem. The journal of symbolic logic 1, 1 (1936), 40–41.
[16] C2 Wiki Community. 2022. Closures and Objects Are Equivalent. http://wiki.c2.com/?ClosuresAndObjectsAreEquivalent Accessed: March 3,

2024.

[17] Gaspard Gustave Coriolis. 1835. Mémoire sur les équations du mouvement relatif des systèmes de corps. Bachelier.
[18] Rebecca M Currano, Martin Steinert, Larry J Leifer, et al. 2011. Characterizing reflective practice in design–what about those ideas you get in

the shower?. In DS 68-7: Proceedings of the 18th International Conference on Engineering Design (ICED 11), Impacting Society through Engineering
Design, Vol. 7: Human Behaviour in Design, Lyngby/Copenhagen, Denmark, 15.-19.08. 2011. 374–383.

[19] Evans Data. 2023. Worldwide Developer Population from 2016 to 2023. https://www.statista.com/statistics/627312/worldwide-developer-

population/ Accessed: March 3 2024.

[20] DataReportal, Meltwater, and We Are Social. 2024. Internet and Social Media Users in the World 2024. https://www.statista.com/statistics/

617136/digital-population-worldwide/ Accessed: March 3 2024.

[21] Nicolaas Govert De Bruijn. 1972. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with

application to the Church-Rosser theorem. In Indagationes mathematicae (proceedings), Vol. 75. Elsevier, 381–392.
[22] Vitor De Mario, Golden Cuy, David Karlton, and Murven. 2014. Has Phil Karlton ever said "There are only two hard things in Computer

Science: cache invalidation and naming things"? https://skeptics.stackexchange.com/questions/19836/has-phil-karlton-ever-said-there-are-

only-two-hard-things-in-computer-science. Accessed March 3 2024.

[23] Liesbeth De Mol, Bullynck Maarten, and Edgar G Daylight. 2018. Less is more in the fifties: Encounters between logical minimalism and

computer design during the 1950s. IEEE Annals of the History of Computing 40, 1 (2018), 19–45.

[24] Mark Delaere, Maarten Beirens, and Hilary Staples. 2004. Minimal music in the Low countries. Tijdschrift van de Koninklijke Vereniging voor
Nederlandse Muziekgeschiedenis 1 (2004), 31–78.

[25] Oxford English Dictionary. 2022. Dictionary. Oxford University Press.

[26] Edsger W Dijkstra. 1972. The humble programmer. Commun. ACM 15, 10 (1972), 859–866.

[27] Postamate Editor. 2023. Why Software Engineers Have Short Life Expectancy. https://postamate.com/2023/08/why-software-engineers-have-

short-life-expectancy/

[28] Mimi Engel, Amy Claessens, and Maida A Finch. 2013. Teaching students what they already know? The (mis) alignment between mathematics

instructional content and student knowledge in kindergarten. Educational Evaluation and Policy Analysis 35, 2 (2013), 157–178.
[29] S Forster et al. 2009. The forest for leisure activities and tourism: a yearning for nature or sustainable development?(essay). Schweizerische

Zeitschrift für Forstwesen 160, 7 (2009), 189–194.

[30] Martin Fowler. 2009. Two Hard Things. https://martinfowler.com/bliki/TwoHardThings.html. Accessed March 3 2024.

[31] Rob Franken, Hidde Bekhuis, and Jochem Tolsma. 2023. Kudos make you run! How runners influence each other on the online social network

Strava. Social Networks 72 (2023), 151–164.
[32] Luke-Elizabeth Gartley. 2022. CLADISTICS ruined my life: intersections of fandom, internet memes, and public engagement with science.

Journal of Science Communication 21, 5 (2022), Y01. https://doi.org/10.22323/2.21050401

[33] Gartner. 2021. Global Shipments of Personal Computers from 2006 to 2021. https://www.statista.com/statistics/273495/global-shipments-of-

personal-computers-since-2006/ Accessed: March 3 2024.

[34] Kurt Gödel. 1931. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und
Physik 38–38, 1 (Dec. 1931), 173–198. https://doi.org/10.1007/bf01700692

[35] Nik Hanselmann. 2010. bodyfuck - gestural brainfuck interpreter (2010). https://youtu.be/watch?v=ekjtZ85mA3I Accessed: March 3, 2024.

[36] Nik Hanselmann. 2010. There is no hardware. http://web.archive.org/web/20141205200435/http://www.nikhanselmann.com/public/etc/thesis/

Accessed: March 3 2024, Archived: December 5 2014.

[37] Aldous Huxley. 1932. Brave New World. Chatto & Windus.

[38] Feruzan Irani-Williams, Lori Tribble, Paige S Rutner, Constance Campbell, D Harrison McKnight, and Bill C Hardgrave. 2021. Just Let Me Do

My Job! Exploring the Impact of Micromanagement on IT Professionals. ACM SIGMIS Database: the DATABASE for Advances in Information
Systems 52, 3 (2021), 77–95.

https://doi.org/10.1080/10803548.2006.11076691
https://arxiv.org/abs/https://doi.org/10.1080/10803548.2006.11076691
https://doi.org/10.1109/ICSE43902.2021.00061
https://doi.org/10.1109/ICSE43902.2021.00061
https://sigbovik.org/2017/proceedings.pdf
https://danm.ucsc.edu/news_events/2010-mfa-exhibition
https://danm.ucsc.edu/news_events/2010-mfa-exhibition
https://wasbe.org/de-vorhalding-for-piano-and-winds-1972-by-louis-andriessen-the-netherlands-1939-2021
https://doi.org/10.1007/978-3-319-91908-9_15
http://www.jstor.org/stable/1968337
http://www.jstor.org/stable/1968337
http://wiki.c2.com/?ClosuresAndObjectsAreEquivalent
https://www.statista.com/statistics/627312/worldwide-developer-population/
https://www.statista.com/statistics/627312/worldwide-developer-population/
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://skeptics.stackexchange.com/questions/19836/has-phil-karlton-ever-said-there-are-only-two-hard-things-in-computer-science
https://skeptics.stackexchange.com/questions/19836/has-phil-karlton-ever-said-there-are-only-two-hard-things-in-computer-science
https://postamate.com/2023/08/why-software-engineers-have-short-life-expectancy/
https://postamate.com/2023/08/why-software-engineers-have-short-life-expectancy/
https://martinfowler.com/bliki/TwoHardThings.html
https://doi.org/10.22323/2.21050401
https://www.statista.com/statistics/273495/global-shipments-of-personal-computers-since-2006/
https://www.statista.com/statistics/273495/global-shipments-of-personal-computers-since-2006/
https://doi.org/10.1007/bf01700692
https://youtu.be/watch?v=ekjtZ85mA3I
http://web.archive.org/web/20141205200435/http://www.nikhanselmann.com/public/etc/thesis/

[39] Zachary C Irving, Catherine McGrath, Lauren Flynn, Aaron Glasser, and Caitlin Mills. 2022. The shower effect: Mind wandering facilitates

creative incubation during moderately engaging activities. Psychology of Aesthetics, Creativity, and the Arts (2022).
[40] David Karlton. 2017. Naming things is hard. https://www.karlton.org/2017/12/naming-things-hard/. Accessed March 3 2024.

[41] Mia Keinänen. 2016. Taking your mind for a walk: a qualitative investigation of walking and thinking among nine Norwegian academics.

Higher Education 71 (2016), 593–605.

[42] Joseph B Keller. 2010. Ponytail motion. SIAM J. Appl. Math. 70, 7 (2010), 2667–2672.
[43] Leslie Lamport. 2019. Time, clocks, and the ordering of events in a distributed system. In Concurrency: the Works of Leslie Lamport. 179–196.
[44] John Lanchester. 2019. Orwell v Huxley: whose dystopia are we living in today? https://www.ft.com/content/aa8ac620-1818-11e9-b93e-

f4351a53f1c3 Accessed: March 3, 2024.

[45] P. J. Landin. 1966. The next 700 programming languages. Commun. ACM 9, 3 (mar 1966), 157–166. https://doi.org/10.1145/365230.365257

[46] Akiva Leffert. 2010. Harnessing Human Computation: 𝛽-Reduction Hero. SIGBOVIK Technical Report (2010). https://sigbovik.org/tr/2010-

001.html

[47] Luis Lugo, Sandra Stencel, John Green, Timothy S Shah, Brian J Grim, Gregory Smith, Robert Ruby, Allison Pond, Andrew Kohut, Paul Taylor,

et al. 2006. Spirit and power: A 10-country survey of Pentecostals. In The Pew Forum on Religion and Public Life.
[48] Saul M Luria. 1969. Average age at death of scientists in various specialties. Public Health Reports 84, 7 (1969), 661.
[49] Marc Luy, ChristianWegner-Siegmundt, AngelaWiedemann, and Jeroen Spijker. 2015. Life Expectancy by Education, Income and Occupation in

Germany: Estimations Using the Longitudinal Survival Method. Comparative Population Studies 40, 4 (Dec. 2015). https://doi.org/10.12765/CPoS-
2015-16

[50] L Mahadevan. 2012. And the Ig Nobel Goes to... Joseph B. Keller. SIAM News 45, 10 (2012).
[51] Abraham Harold Maslow. 1966. The psychology of science: A reconnaissance. (1966).

[52] Adam M Mastroianni and Daniel T Gilbert. 2023. The illusion of moral decline. Nature 618, 7966 (2023), 782–789.
[53] Jim McCann. 2015. Comment: SIGBOVIK Should Ban Conclusions. SIGBOVIK (2015), 83–84. https://sigbovik.org/2015/proceedings.pdf

[54] Cabrera M.E., Sanchez-Tamayo N., R. Voyles, and J.P. Wachs. 2017. One-Shot Gesture Recognition: One Step Towards Adaptive Learning. 12th
IEEE International Conference on Automatic Face & Gesture Recognition (2017).

[55] Benedict Cumberbatch Morten Tyldum. 2014. The Imitation Game. Film.

[56] Urban Müller. 1993. Brainfuck. http://esoteric.voxelperfect.net/wiki/Brainfuck Accessed: March 3, 2024.

[57] Gunnthora Olafsdottir, Paul Cloke, André Schulz, Zoé Van Dyck, Thor Eysteinsson, Björg Thorleifsdottir, and Claus Vögele. 2020. Health

benefits of walking in nature: A randomized controlled study under conditions of real-life stress. Environment and Behavior 52, 3 (2020),
248–274.

[58] Marily Oppezzo and Daniel L Schwartz. 2014. Give your ideas some legs: the positive effect of walking on creative thinking. Journal of
experimental psychology: learning, memory, and cognition 40, 4 (2014), 1142.

[59] George Orwell. 1949. Nineteen Eighty-Four. Secker & Warburg.

[60] Linda A Ovington, Anthony J Saliba, Carmen C Moran, Jeremy Goldring, and Jasmine B MacDonald. 2018. Do people really have insights in

the shower? The when, where and who of the Aha! Moment. The Journal of Creative Behavior 52, 1 (2018), 21–34.
[61] James Patience, Ka Sing Paris Lai, Elizabeth Russell, Akshya Vasudev, Manuel Montero-Odasso, and Amer M Burhan. 2019. Relationship

between mood, thinking, and walking: a systematic review examining depressive symptoms, executive function, and gait. The American
Journal of Geriatric Psychiatry 27, 12 (2019), 1375–1383.

[62] Giuseppe Peano. 1889. Arithmetices principia: Nova methodo exposita. Fratres Bocca.
[63] Giuseppe Peano. 1901. Formulario mathematico. Revue de Métaphysique et de Morale 14, 3 (1901).
[64] David Peter. 2023. hyperfine. https://github.com/sharkdp/hyperfine

[65] Darcy C Plymire. 2004. Positive addiction: running and human potential in the 1970s. Journal of Sport History 31, 3 (2004), 297–315.

[66] J. Postel. 1980. DoD standard Transmission Control Protocol. https://doi.org/10.17487/rfc0761

[67] John C. Reynolds. 1972. Definitional interpreters for higher-order programming languages. In Proceedings of the ACM Annual Conference -
Volume 2 (Boston, Massachusetts, USA) (ACM ’72). Association for Computing Machinery, New York, NY, USA, 717–740. https://doi.org/10.

1145/800194.805852

[68] S Pressman Roger and R Maxin Bruce. 2015. Software engineering: a practitioner’s approach. McGraw-Hill Education.

[69] Fred B Schneider. 2003. Least privilege and more [computer security]. IEEE Security & Privacy 1, 5 (2003), 55–59.

[70] M. Schönfinkel. 1924. Über die Bausteine der mathematischen Logik. Math. Ann. 92, 3–4 (Sept. 1924), 305–316. https://doi.org/10.1007/

bf01448013

[71] David J Shonk and James F Weiner. 2021. Sales and revenue generation in sport business. Human Kinetics.

[72] Jérôme Siméon and Philip Wadler. 2003. The essence of XML. ACM Sigplan Notices 38, 1 (2003), 1–13.
[73] T. Soratana, M.V.S.M. Balakuntala, P. Abbaraju, R. Voyles, J. Wachs, and M. Mahoor. 2018. Glovebox Handling of High-Consequence Materials

with Super Baxter and Gesture-Based Programming. 44th International Symposium on Waste Management (2018).
[74] Jan L. Souman, Ilja Frissen, Manish N. Sreenivasa, and Marc O. Ernst. 2009. Walking Straight into Circles. Current Biology 19, 18 (2009),

1538–1542. https://doi.org/10.1016/j.cub.2009.07.053

[75] Stack Overflow. 2023. Stack Overflow Developer Survey 2023. Stack Overflow. https://survey.stackoverflow.co/2023/#work-company-info

Accessed: March 3, 2024.

[76] Guy L Steele Jr. 2001. Re: need for macros (was Re: Icon). https://people.csail.mit.edu/gregs/ll1-discuss-archive-html/msg01134.html Accessed:

March 3, 2024.

[77] Guy L Steele Jr. 2017. It’s Time for a New Old Language.. In PPoPP.
[78] Strava. 2024. Strava. https://www.strava.com/ Accessed: March 3 2024.

[79] Lora Streeter. 2019. Teaching Introductory Programming Concepts through a Gesture-Based Interface. Theses and Dissertations (2019).
[80] K Suparna, AK Sharma, and J Khandekar. 2005. Occupational health problems and role of ergonomics in information technology professionals

in national capital region. Indian Journal of Occupational and Environmental Medicine 9, 3 (2005), 111–114.
[81] Richa Talwar, Rohit Kapoor, Karan Puri, Kapil Bansal, and Saudan Singh. 2009. A study of visual and musculoskeletal health disorders among

computer professionals in NCR Delhi. Indian J. Community Med. 34, 4 (Oct. 2009), 326–328.
[82] Daniel Temkin. 2015. BodyFuck - esoteric.codes. https://esoteric.codes/blog/bodyfuck-gestural-code Accessed: March 3, 2024.

[83] The Simpsons. 1995. Bart vs. Australia. Television series. https://simpsons.fandom.com/wiki/Bart_vs._Australia Season 6, Episode 16.

[84] Time Team Official. 2011. Phil’s Pub Review. https://youtu.be/watch?v=61lfmiAMC84 Accessed: March 3 2024.

[85] Topografix. 2004. GPX (GPS Exchange Format) Version 1.1. http://www.topografix.com/GPX/1/1/ Accessed: March 3, 2024.

https://www.karlton.org/2017/12/naming-things-hard/
https://www.ft.com/content/aa8ac620-1818-11e9-b93e-f4351a53f1c3
https://www.ft.com/content/aa8ac620-1818-11e9-b93e-f4351a53f1c3
https://doi.org/10.1145/365230.365257
https://sigbovik.org/tr/2010-001.html
https://sigbovik.org/tr/2010-001.html
https://doi.org/10.12765/CPoS-2015-16
https://doi.org/10.12765/CPoS-2015-16
https://sigbovik.org/2015/proceedings.pdf
http://esoteric.voxelperfect.net/wiki/Brainfuck
https://github.com/sharkdp/hyperfine
https://doi.org/10.17487/rfc0761
https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/800194.805852
https://doi.org/10.1007/bf01448013
https://doi.org/10.1007/bf01448013
https://doi.org/10.1016/j.cub.2009.07.053
https://survey.stackoverflow.co/2023/#work-company-info
https://people.csail.mit.edu/gregs/ll1-discuss-archive-html/msg01134.html
https://www.strava.com/
https://esoteric.codes/blog/bodyfuck-gestural-code
https://simpsons.fandom.com/wiki/Bart_vs._Australia
https://youtu.be/watch?v=61lfmiAMC84
http://www.topografix.com/GPX/1/1/

[86] S. Toro-Guajardo, E. Lizama, and F.J. Gutierrez. 2023. Gesture Coding: Easing the Introduction to Block-Based Programming Languages with

Motion Controls. Proceedings of the International Conference on Ubiquitous Computing & Ambient Intelligence (2023). https://doi.org/10.1007/978-
3-031-21333-5_84

[87] A. M. Turing. 1936. On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the LondonMathematical Society
s2-42, 1 (1936), 230–265. https://doi.org/10.1112/plms/s2-42.1.230 arXiv:https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-

42.1.230

[88] Tom Murphy VII. 2015. The Portmantout. SIGBOVIK (2015), 85–98. https://sigbovik.org/2015/proceedings.pdf

[89] Simon Winchester. 2011. A Verb for Our Frantic Times. https://www.nytimes.com/2011/05/29/opinion/29winchester.html Accessed: March 3,

2024.

[90] Marcus Wohlsen. 2013. Guys Like This Could Kill Google Glass Before It Ever Gets Off the Ground. https://www.wired.com/2013/05/inherent-

dorkiness-of-google-glass/ Accessed: March 3, 2024.

https://doi.org/10.1007/978-3-031-21333-5_84
https://doi.org/10.1007/978-3-031-21333-5_84
https://doi.org/10.1112/plms/s2-42.1.230
https://arxiv.org/abs/https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-42.1.230
https://arxiv.org/abs/https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-42.1.230
https://sigbovik.org/2015/proceedings.pdf
https://www.nytimes.com/2011/05/29/opinion/29winchester.html
https://www.wired.com/2013/05/inherent-dorkiness-of-google-glass/
https://www.wired.com/2013/05/inherent-dorkiness-of-google-glass/

A COMPLETE C11 POOLOLOOP REFERENCE COMPILER SOURCE CODE
The complete C source code of the Poololoop compiler is available in the following listing.

1 #include <stdio.h>
2 #include <string.h>
3 #include <errno.h>
4 #include <stdlib.h>
5 #include <stdbool.h>
6 #include <math.h>
7

8 #define det(a,b,c,d) ((b.y-a.y)*(d.x-c.x)-(b.x-a.x)*(d.y-c.y))
9 #define dot(a,b,c,d) ((b.y-a.y)*(d.y-c.y)+(b.x-a.x)*(d.y-c.y))
10

11 #define new(type) memset(malloc(sizeof(type)), 0, sizeof(type))
12 #define alloc(v) memcpy(malloc(sizeof(v)), (typeof(v)[1]){v}, sizeof(v))
13 #define at(a,i) (a->data[i])
14 #define push(a,e) do { \
15 if (a->len >= a->cap) \
16 a->data = reallocarray(a->data, a->cap+=a->cap+1, sizeof(a->data[0])); \
17 a->data[a->len++] = e; \
18 } while(0)
19

20 #define typedef_array(type, name) \
21 typedef struct { type* data; size_t len; size_t cap; } name
22

23 #define error(m) do { fprintf(stderr, m "\n"); exit(-1); } while(0)
24 #define paren(code) do { printf("("); code; printf(")"); } while(0);
25

26 typedef struct { double y; double x; } coord;
27 typedef_array (coord, coord_arr);
28

29 typedef struct { int id; double ord; double dir; bool open; } crossing;
30 typedef_array (crossing, crossing_arr);
31

32 typedef enum { var, fun, app } expr_kind;
33 typedef struct { size_t var; void* es; expr_kind kind; } expr;
34 typedef_array (expr, expr_arr);
35

36 enum { haskell, scheme } target = scheme;
37

38 int compare_cross(const void* p1, const void* p2) {
39 return ((crossing*)p1)->ord - ((crossing*)p2)->ord;
40 }
41

42 bool prefix(char* s, char* p) {
43 return !*p || (*p==*s && prefix(s+1, p+1));
44 }
45

46 double read_d(char* str) {
47 char buff[25] = {0};
48 for (size_t i = 5; str[i] != 34 && i < 30; i++) buff[i-5] = str[i];
49 return atof((char*) &buff);
50 }
51

52 coord_arr* read_coords(char* s) {
53 coord_arr* coords = new(coord_arr);
54 for (double cs[2] = { NAN, NAN }; *s; s++) {
55 if (prefix(s,"lat=\"")||prefix(s,"lon=\"")) cs[s[1]==111]=read_d(s);
56 if (!isnan(cs[0])&&!isnan(cs[1])) {
57 push(coords, ((coord) {cs[0],cs[1]}));
58 cs[0] = cs[1] = NAN;
59 }
60 }
61 return coords;
62 }
63

64 crossing_arr* find_crossings(coord_arr* cs, double hemisphere) {
65 crossing_arr* arr = new(crossing_arr);
66 for (size_t i=0,j=0,z=0; j<cs->len-1; i=0,j++) for (; i<j; i++,z++) {
67 coord a = at(cs, i), b = at(cs, i+1), c = at(cs, j), d = at(cs, j+1);
68 double n = det(a,b,c,d), t1 = det(a,c,c,d)/n, t2 = det(a,c,a,b)/n;
69 if (0 < t1 && t1 < 1 && 0 < t2 && t2 < 1) {
70 double dir = -hemisphere*atan2(det(a,b,c,d),dot(a,b,c,d));
71 push(arr, ((crossing) { z, i+t1, dir, true }));
72 push(arr, ((crossing) { z, j+t2, dir, false }));
73 }
74 }

75 if(arr->data) qsort(arr->data, arr->len, sizeof(crossing), compare_cross);
76 return arr;
77 }
78

79 void codegen(expr* e, unsigned int debruijn) {
80 if (!e) error("Empty expression not allowed");
81 else if (e->kind == var) {
82 if (debruijn < e->var) error("Free variables not supported");
83 printf("x%ld", debruijn - e->var);
84 } else if (e->kind == fun) paren({
85 printf(target==scheme ? "lambda (x%ld) " : "\\ x%ld -> ", debruijn);
86 codegen(e->es, debruijn + 1);
87 }) else paren({
88 for (size_t i=0; i<((expr_arr*)(e->es))->len && (!i||printf(" ")); i++)
89 codegen(((expr_arr*) (e->es))->data+i, debruijn);
90 })
91 }
92

93 expr* parse(crossing_arr* pts, unsigned int* i) {
94 if (*i >= pts->len) error("Unexpected End-Of-Run");
95 crossing pt = at(pts, *i);
96 size_t j = (*i)++;
97 while (j+1 < pts->len && at(pts,j).open
98 && !at(pts,j+1).open && at(pts,j).id == at(pts,j+1).id) j+=2;
99 size_t streak = (j-*i+1)/2;
100 if (streak > 0) {
101 *i += 2*streak-1;
102 return alloc(((expr) {streak, 0, var}));
103 } else if (pt.open && pt.dir > 0) {
104 expr* body = parse(pts, i);
105 if (*i<pts->len && pt.id==at(pts,*i).id && !at(pts,(*i)++).open)
106 return alloc(((expr) {0, body, fun}));
107 else error("Expected closing intersection");
108 } else if (pt.open && pt.dir < 0) {
109 expr_arr* arr = new(expr_arr);
110 do push(arr, *parse(pts, i));
111 while (*i >= pts->len || pt.id!=at(pts,*i).id || at(pts,*i).open);
112 if ((*i)++ >= pts->len) error("Closing intersection never found");
113 return arr->len == 1 ? arr->data : alloc(((expr) {0, arr, app}));
114 } else error("Too many closing intersections");
115 }
116

117 char* file_get_contents(char* filename) {
118 FILE* file = fopen(filename, "r");
119 if (!file) {
120 fprintf(stderr, "error opening %s: %s\n", filename, strerror(errno));
121 exit(errno);
122 }
123 typedef_array(char, str);
124 str* contents = new(str);
125 for (char c=0; (c = fgetc(file)) ^ EOF;) push(contents, c);
126 fclose(file);
127 return contents->data;
128 }
129

130 int main(int argc, char** argv) {
131 if ((argc != 3 && argc != 4)
132 || (argc == 4 && strcmp(argv[3],"hs") && strcmp(argv[3],"scm"))) {
133 fprintf(stderr, "USAGE: %s file.gpx name [hs|scm]\n", argv[0]);
134 return -1;
135 }
136

137 target = (argc == 3 || strcmp(argv[3],"hs")) ? scheme : haskell;
138 coord_arr* cs = read_coords(file_get_contents(argv[1]));
139 crossing_arr* crossings = find_crossings(cs, cs->data ? at(cs,0).y : 0);
140 free(cs->data); free(cs);
141 expr* e = parse(crossings, new(unsigned int));
142 free(crossings->data); free(crossings);
143

144 printf(target == scheme ? "(define %s " : "%s = ", argv[2]);
145 codegen(e, 0);
146 target == scheme && printf(")");
147 }

	Abstract
	1 Introduction
	2 Background
	2.1 Running
	2.2 -calculus

	3 The Design of Poololoop
	3.1 Syntax
	3.2 Formal Semantics

	4 Programming in Poololoop
	4.1 Church Booleans
	4.2 Church Numerals
	4.3 Fixed Point Operators

	5 Implementation
	6 Evaluation
	7 Related Works
	7.1 Alternative or Assistive Hardware
	7.2 Gestural Programming Languages

	References
	A Complete C11 Poololoop Reference Compiler Source Code

