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Abstract— Should lifetimes have a role beyond memory-safety? Should they be erased or should they be included in

the compilation unit? Should lifetimes have dynamic semantics? In this paper we explore a model of programming

where these questions are answered in the positive. First, we revisit the history of object-oriented programming and

its broader cultural sphere to identify a dynamic semantic for lifetimes. Second, we argue that planned obsolescence

is not only one such model, but the only model. Third, we develop this semantics in the framework of category

theory and implement it for the Java Virtual Machine. And finally, We demonstrate empirically through four case

studies that programming under planned obsolescence is possible and identify a surprising result: the paradigm

which is the most industry friendly performs the worst while the one which is the least friendly performs the best.

CCS Concepts: • Software and its engineering → Correctness; Abstraction, modeling and modularity;
Software usability; Source code generation; Object oriented frameworks; • Social and professional topics →
Cultural characteristics.
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1 INTRODUCTION
Lifetimes last lifetimes: they are timeless and ubiquitous. While programming, programmers commonly

reserve a region of memory to record objects within so that later these objects can be recalled on demand.

However, as memory was sparse and valuable in the dawn of programming, unused objects needed to

be freed and their memory reclaimed, thus one may speak of the object’s lifetime as the duration an

object occupies in some memory region. To determine the lifetime of objects, programmers employ

lifetime analysis [58].
As programmers are fallible, their analyses are not always correct. Consequently, throughout the

history of software production, a slew of memory-related bugs began surfacing and gnawing at critical

infrastructure. As of writing, these bugs are deemed by the community and the world at large to be

the most critical ones [11, 46, 48, 67]. For that reason, the United States White House in February

2024 following the United States National Security Agency [15] recommended the use of Rust [56]—a

so-called memory-safe programming language [52].

Rust, drawing inspiration from Cyclone [66], offers syntactic capabilities to express lifetimes and the

necessary automated checks. This offloads the task of tracking (and analysing) lifetimes from humans

unto compilers. As compilation has been made entirely obsolete by machines, the confidence in the

correctness of lifetime analyses is at its all time high [4, 75].

Litetimes are akin to types: both capture an aspect of computation and both are described by a

plethora of calculi [34]. Yet, lifetimes are not given the same attention that types get. Throughout

decades a myriad of papers have been written about the nature of types, yet, for example, it is still not

clear whether types should be checked statically or dynamically (or even gradually) [21, 31], if they

should be erased or included in the compilation unit [1, 33], or if they should have dynamic semantics

or not [37, 49]. On the other hand, no such inquiries have been done into the nature of lifetimes. The

thesis of this paper is to fill this semantic gap by giving dynamic semantics to lifetimes.

Semantic gaps in programming languages are addressed through the following two perspectives.

The first, the pragmatic approach, motives the proposed semantics based on user studies, surveys, or

limitations in expressivity. This approach requires a priori knowledge of potential target semantics

which many intuit to be correct. The second, the Curry-Howard-Lambek correspondence, motivates

a proposed semantics by relating it to a pre-existing similar concept in either the theories of logic,

computation, or categories. Sadly, for lifetimes none of these instruments are applicable. Instead, we



propose applying discourse analysis, an established framework of analyses whose objects are statements

and expressions [6, 71].

The research into lifetimes, for example, constitute a discourse: a framework of languages in which

lifetime is given semantics [23]. In fact, we have already applied one discourse analysis to lifetime

semantics: that we have identified the gap is thanks to the negative space analysis [24, 62].
The other analysis we wish to use is the rule of formation analysis [25] that allows us to identify a

minimal set of tools that are sufficient to define and implement semantics. The first tool that is common

to all studies of a programming language concept are formal models that define the concept based on

its behavior, i.e. its interface. This model with its critical interface creates a proto-technological power
hierarchy as it is lacking the enforcer of the dictated static and dynamic semantic rules. Thus to complete

the hierarchy the second part must be such an enforcer. The existing literature is abound with proposals

such as compilers, type-checkers, static analysers, runtime systems, or even continuous integration systems,
to complete the hierarchy.

The final analysis we use is historical contextualization which we apply to objects since lifetimes are

attached to them. Alan Kay and Adele Goldberg, designers of Smalltalk 72 [43], brought objects and

object-oriented programming into the forefront of programming culture and fashion. But they did not

invent either. Famously, objects were birthed in Oslo by Dahl and Nygaard in the early 1960s while

designing Simula I and Simula 67 [51]. Dahl and Nygaard introduced the terminology object hastily as a

neutral alternative to process which referred to concept of “self-initializing data/procedure object” [51].

Thus, objects come in two parts: data and procedures. Yet not every such pairing is an object. According

to Ralph Johnson’s Scandinavian View—which originated from Dahl and Nygaard—objects are the

pairings that are meant to be models of physical objects [41], “simulating the behaviour of either a real

or an imaginary part of the world” [45].

A New Semantics: Product Obsolescence. To be coherent, the natural dynamic semantics of lifetimes

must be coherent with physical lifetimes. But coherence is not the only reason. James Noble, in his

2008 ECOOP banquet talk [50], presented the hypothesis that objects, classes, and object-oriented

programming are a sequitur of technological determinism [60]. To paraphrase: objects are constantly

recreated under the guise of Scheme closures [64], Prolog infinite loops [29, 50, 63], Erlang processes [36],

and Haskell type-classes, monads, and lenses [55]. One may conclude that objects and the simulation of

the physical world through programming seem to be a fundamental part of the act; that their creation

is deterministically unavoidable [2].

Here two kinds of physical lifetimes present themselves: natural degradation and deliberate obso-

lescence [9]. However that is a false dichotomy as natural degradation is the trivial obsolescence: the

planned obsolescence with the minimal plan.

To that end, the natural dynamic semantics we assign to object lifetimes in software is planned

obsolescence. That is, informally, objects degrade in quality the more they are used.

Yet we must be weary of blind simulation: we must not apply all aspects of planned obsolescence

to objects. For example, a light-bulb after one thousand hours will seize to light as its filament will

physically snap in two [44]. A LightBulb object, on the other hand, ought not to violate its abstract—

pre-planned obsolescence—invariants after calling a turnOn() method. It is imperative to stress that

abstract planned obsolescence must not break objects but rather degrade their quality. Thus the measure

of quality must be a function of only the non-functional requirements of the object. This narrows the

possible metrics to two: space and time; the amount of memory and time a method call takes. Reaching

the limits of a machine’s storage renders it unresponsive and thus violates our degradation invariant.

Thus, we argue that time is the only quality metric that can be degraded while remaining productive.

In summary, the dynamic semantics of lifetimes is the runtime degradation à-la planned obsolescence.



Contributions. In summary, there is a gap in the semantics of object lifetimes, precisely in their

dynamic semantics. In this paper we address this gap by proposing a dynamic semantics of lifetimes.

This modest proposal follows a natural extension of the Scandanavian View of objects-as-models and

states that lifetimes ought tomodel the lifetimes of products—which objects aremathematically—through

planned obsolescence. Our contributions are thus:

• BCCC𝑝𝑜
, the first formal model of languages endowed with planned obsolescence (Section 4).

• jGeorge, an implementation of BCCC𝑝𝑜
targeting Java Bytecode class files for the Java Virtual

Machine (Section 5) named after J. George Frederick (Section 2).

• An evaluation of jGeorge answering four research questions through four case studies: two real-

world Java programs, a real-world Scala program, and jEd, a text editor implemented in multiple

paradigms. We demonstrate empirically the surprising result that the programming style that is

most industry-friendly performs the worst while the style that is least industry-friendly performs

the best (Section 6).

2 BACKGROUND
A Brief History of Single Use and the Birth of Obsolescence. The history of planned obsolescence starts

in the late nineteenth century during the industrial revolution in the United States of America. The
economic problem that every industry was attempting to solve was overproduction: people wanted

industrial jobs, thus many were producing, thus many was produced, but the demand was low, hence

produce was often unsold [47].

The earliest industries who addressed overproduction successfully were those who convinced their

customers to buy their products multiple times. The quintessential example is paper clothing. These
fabrics could be simply thrown out once “this apology for personal cleanliness” [3] became soiled

and new, clean ones would be purchased. This business capitalized on laundry services being both

expensive and exclusive to men with access to “spousal services” which proved successful as they

were selling one-hundred and fifty million paper collars and cuffs annually leading to paper clothing

becoming ubiquitous. Naturally, these manufacturers expanded their production into paper hats and

paper coats [8]. And so, the first successful answer to overproduction became single use.
King Camp Gillette, inventor of the single use shaving blade, marketed his namesake product not

only as a convenience but as a more hygienic alternative to the shaving apparatus of the time [19].

This new line of argumentation proved to so effective that Gillette became a house-hold name and a

multi-millionaire. Inspired by Gillette, a whole line of hygiene-first single use products derived from his

blade: Kleenex tissues, Band-Aid bandages, Kotex sanitary pads, and vulcanized rubber condoms [61].

The Kinds of Obsolescence. In other industries such as the automotive one, single use could not be

rationally considered as a product design strategy as the repurchase of a product could not be expected

to be done so frequently without filtering all but the wealthy consumers of which few existed. Thus, a

more relaxed version of single use began circulating: obsolescence. With time, industries realized that

obsolescence strategies fell under one of two umbrellas: technological and psychological [7].

Technological obsolescence is the engineer’s go-to obsolescence model which nowadays is referred

to as updates. The premise of this is the following observation: a product can be made obsolete, on

purpose, by simply developing a better product. And so a positive feedback loop is set in motion: the

marketplace forces will favor the new and improved products solely based on their technological merit,

and those very same forces will favor and encourage the developers that consider improving a product.

Psychological, or stylistic, obsolescence is the salesman’s go-to obsolescence model. In this model, a

product becomes obsolete because it merely seizes to be in fashion. The earliest practice of psychological

obsolescence can be traced back to the rivalry between Ford and General Motors, more precisely,

to 1923 when Arthur P. Sloane joined General Motors. When he attempted to make Ford’s Model T



obsolete through technological obsolescence—precisely, by improving on the cooling mechanism of the

engine—and failed due a fault in the mechanism, he switched strategies promptly and instead sold a

visually redesigned Chevrolet that mimicked the style of luxury cars. That strategy proved successful

and America’s most-selling automotive company became General Motors [61].

J. George Frederick and Progressive Obsolescence. In the late twenties obsolescence was not systematic,

and while it was intentional its practice was mostly reactionary. The first person to argue for and make

a framework out of deliberate and systematic obsolescence was J. George Frederick [61]. Frederick was

an authority in sales, business, and advertisement with a fascination for writing and cooking [68]. He

wrote books ranging from cookery such as Cooking as Men Like it to self-help such as What Is Your
Emotional Age? And 65 Other Mental Tests to advertisement such as Selling by Telephone to sales such

as the classic Modern Sales Management. However, his most influential essay is his Advertising and

Selling’s piece titled Is Progressive Obsolescence a Path Toward a Sustainable Economy? [20, 27] in which

he coined and defined progressive obsolescence as follows:
I refer to a principle which, for want of a simpler term, I name progressive obsolescence.
[... Namely] buying goods not to wear out, but to trade in or discard after a short time,
when new and more attractive goods or models come out.

His principal argument for businesses to engage in progressive obsolescence was surprisingly ad-

dressed to the common American consumer. He argued that a patriotic American had the civil duty of

enabling technological progress by engaging in Consumerism as we know it now, since:

Every time the American consumer decides on liking something new, it means that

factory wheels spin, smoke-stacks belch smoke, and high wages and full employment

occur. Every time an American consumer contents himself with antique furniture, [...]

and old goods [...], he is tightening the brake band around the American wheel of progress

and is retarding our standard of living.

In Frederick’s mind, if the American business did not prevent the consumer from stagnating in

tradition and did not offer them the opportunity to revel in progress then this patriotic duty of the

American consumer could not be prevented. Thus, his call to the American businesses was to be patriotic

and realize that:

how is this acceleration of the idea of progressive obsolescence to be accomplished, there

need be offered no “brilliant” new panacea. Advertising is the proved and tried tool.

In other words, that it is their duty to advertise the latest product so as to create want in consumers

for the new and aversion for the old. It is in his honour that we call our system jGeorge.

3 PROGRAMMINGWITH PLANNED OBSOLESCENCE
In this section we explore the effects of planned obsolescence on programming. Precisely, we reason

informally about the performance of the Fibonacci program with the dynamic semantics of lifetimes

motivated in Section 1 that jGeorge uses.

Timely and Methodic Obsolescence. jGeorge targets the Java Virtual Machine (JVM) by modifying

some given class file. Briefly, jGeorge performs the following changes to a class file: 1) it creates a new

integer field _uses that increments on every method call, 2) it creates a new method _slowDown() that

increments _uses and starts a busy loop that terminates after _uses nanoseconds, and 3) it modifies

every method—with the exception of the _slowDown method—so that it always starts by calling the

_slowDown method.

We refer to this implementation as the timely and methodic obsolescence model as it only degrades

the running time of a JVM program without affecting its correctness through modifying its methods.



One important consequence of this model is that an object is marked as used not only when it’s

internal state is modified, but also when it’s read through getters or view methods. In reality, many

physical objects have this property. In the extreme case quantum systems are affected by reads: their

state is said to collapse after observations. Less extreme cases are organs and bones whenever they are

scanned by high-frequency electromagnetic radiation. But more common systems, for example boxes,

cabinets, cupboards, drawers, and installed analog photography films all have their hinges degrade

when looking within them.

The Two Fibonaccis. The Fibonacci program is one favored among both functional and imperative

programmers. The functional programmer is attracted to its simple recursive definition while the

imperative programmer is attracted to the massive speed-up that loops and mutation offer it.

In Figure 1a we recreate the functional implementation in Java and in Figure 1b the imperative one.

1 class FuncFibonacci {
2 public int fib(int n) {
3 return n <= 1 ? 1 : fib(n-1) + fib(n-2);
4 }
5 }

(a) The functional Fibonacci in Java.

1 class ImpFibonacci {
2 public int fib(int n) {
3 int a, b;
4 for (a=b=1; n>0; n--, b=a+(a=b));
5 return a;
6 }
7 }

(b) The imperative Fibonacci in Java.

Fig. 1. A functional and imperative implementation of the Fibonacci function in Java.

It is simple to conclude that the program in Figure 1b computes the 𝑛-th Fibonacci number in

O(𝑛) steps. The runtime of the program in Figure 1a can be found by solving the recurrence 𝑇 (𝑛) =
𝑇 (𝑛 − 1) +𝑇 (𝑛 − 2) with the boundary conditions that 𝑇 (0) = 𝑇 (1) = O(1) which can be expressed as

the following: (
𝑇 (𝑛 + 1)
𝑇 (𝑛)

)
=

(
1 1

1 0

) (
𝑇 (𝑛)
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)
=

(
1 1

1 0

)𝑛 (
O(1)
O(1)

)
The matrix has two eigenvalues: 𝜆1 =

1

2
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√
5) and 𝜆2 = 1

2
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√
5). With this information we can

diagonalize this matrix to get:(
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𝑇 (𝑛)

)
=
1

5

(
𝜆1 𝜆2
1 1

) (
𝜆1 0

0 𝜆2

)𝑛 (
−
√
5 5𝜆2√
5 5𝜆1

) (
O(1)
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)
Or simply,

𝑇 (𝑛) = O(𝜆𝑛
1
) + O(𝜆𝑛

2
) ≈ O(1.618𝑛) + O(−0.618𝑛) ≈ O(1.618𝑛)

Fibonacci with Planned Obsolescence. To understand the effect that planned obsolescence has on the

two Fibonacci programs in Figure 1 we have to study how the runtime degrades when the fibmethod is

used multiple times. In the functional definition this is already the case: each recursive call is reusing the

FuncFibonacci object. In the imperative definition this is not the case. Thus to make the comparison

fair, let’s consider the situation when we are interested in computing𝑚 Fibonacci numbers of roughly

the same size 𝑛 by calling fib𝑚 times.

Recall that timely and methodic planned obsolescence incurs a cost of one extra nanosecond on every

function call; so the first call costs one nanosecond, the second costs two nanoseconds, the third costs

three, etc... Thus, the cost of calling ImpFibonacci’s fib𝑚 times is O(𝑚 · 𝑛).



Computing the cost of FuncFibonacci’s fib is much more involved. We approach it through two

steps: first, we find the cost of computing a single Fibonacci number under planned obsolescence, then

we find the cost of computing multiple ones. Firstly, observe that after computing the 𝑛-th Fibonacci

number, the _uses counter will be equal to the number of recursive calls, that is O(𝜆𝑛
2
). This is in

fact an invariant. Therefore, the recursive computation spent

∑
𝑖≤O(𝜆𝑛

2
) 𝑖 = O(𝜆2𝑛

2
) nanoseconds in

planned obsolescence. Secondly, notice that this expression is correct only if the first recursive call

waited one nanosecond. If instead it had to wait 𝑡 nanoseconds, then every call would have to also

wait 𝑡 nanoseconds. Thus, we must add a (𝑡 − 1)𝜆𝑛
2
factor. Now, to compute the full amount of waiting

time we observe that at the beginning 𝑡 = 1. And that after computing the𝑚-th number (a Fibonacci

number of size 𝑛) the cost is that of computing the number with 𝑡 being the cost of computing the

previous number. Finally, to compute the full runtime we solve the following recurrence: 𝑇 (0) = 1 and

𝑇 (𝑚) = O(𝜆2𝑛
2
) +𝑇 (𝑚 − 1)𝜆𝑛

2
which gives the answer O(𝜆𝑛 ·𝑚

2
).

First Results. Both the imperative and the functional computation of the Fibonacci numbers get

slower under planned obsolescence. The imperative implementation is linearly slower while the func-

tional one is exponentially slower than its previous implementation.

The Objectively Recursive Fibonacci. Naturally, the next question to ask is if the results generalize:

first, that all imperative programs become slower, and second, that all functional programs become

slower.

In this section, we answer the last question with the negative following a single simple yet crucial

observation.

Crucial Observation. Planned Obsolescence punishes consumers who hold onto objects and rewards

those who abandon objects shortly after using them.

The observation lead us to conclude that Planned Obsolescence is punishing our implementations as

they are reusing the same object to compute the𝑚 Fibonacci numbers. In the case of the functional

1 class ObjFuncFibonacci {
2 public int fib(int n) {
3 ObjFuncFibonacci a = new ObjFuncFibonacci(),
4 b = new ObjFuncFibonacci();
5 return n <= 1 ? 1 : a.fib(n-1) + b.fib(n-2);
6 }
7 }
8

9 class Runner {
10 public static void main(String[] args) {
11 for (int m=0; m<Integer.parseInt(args[1]); m++) {
12 System.out.println((new ObjFuncFibonacci()).fib(100));
13 }
14 }
15 }

Fig. 2. The Objectively Functional Fibonacci in Java.

implementation this punishment is dou-

bled: the same object is used in the runner

and in the recursive call.

What would be the consequences if we

apply the single use practice to our pro-

grammatic objects to appease Planned Ob-

solescence? In Figure 2 we implement the

recursive program from Figure 1a in a style

we dub Objectively Functional. In this style,

objects are only ever used once with state

mutations being represented by returning

a copy with the necessary modifications.

Observe that in the fib method of

ObjFuncFibonacci is never called more

than once on any object, even the recur-

sive ones! In other words, not a single

method call must wait more than one nanosecond during obsolescence. Thus, performing a simple

complexity analysis, we can deduce that the running time of the objectively functional implementation

is O(𝑚𝜆𝑛
2
). This leads us to the next result:



𝐶

𝐴 𝐴 × 𝐵 𝐵

𝐴′ 𝐴′ × 𝐵′ 𝐵′

𝑓
⟨𝑓 ,𝑔⟩ 𝑔

𝑓 ′

𝜋1 𝜋2

𝑓 ′×𝑔′ 𝑔′

𝜋1 𝜋2

(a) The Product.

𝐶

𝐴 𝐴 + 𝐵 𝐵

𝐴′ 𝐴′ + 𝐵′ 𝐵′

𝑓

𝜄1

[ 𝑓 ,𝑔] 𝑔

𝜄2

𝑓 ′

𝜄1

𝑓 ′+𝑔′ 𝑔′

𝜄2

(b) The Coproduct.

𝑋 𝑋 ×𝐴

𝑌𝐴 𝑌𝐴 ×𝐴 𝑌

𝜆𝑓 𝜆𝑓 ×1 𝑓

𝜖

(c) The Exponential.

Fig. 3. A bi-cartesian closed category is a category with all products, coproducts, and exponentials.

Final Result. Using the objectively functional paradigm, the objectively recursive implementation

outperforms, exponentially, the functional implementation under planned obsolescence.

4 BCCC𝑝𝑜 : PLANNED OBSOLESCENCE, FORMALLY
In this section, we give a formal model, BCCC𝑝𝑜

, for systems endowed with timely andmethodic planned

obsolescence as described in Section 3. Our presentation uses the standard categorical semantics of

programs as morphisms in a bi-cartesian closed category BCCC [57]. Moreover, as is standard in

categorical semantics, we represent abstract classes as a collection of co-algebras, classes as particular

co-algebras, and objects as a product of a co-algebra and a state [39].

4.1 Background, Notation, and Basic Definitions
A bi-cartesian closed category is any category with all products, coproducts, and exponentials. We set

some notation and recall the definitions that we will use in Figure 3. The product is usually defined as

the upper triangle in Figure 3a. We use the lower rectangle in the diagram to introduce the notation

⟨𝑓 ′, 𝑔′⟩. By duality, the coproduct is also defined by the upper triangle in Figure 3b. We use the lower

rectangle in the diagram to introduce the notation 𝑓 ′ + 𝑔′. The exponential is defined in Figure 3c. We

use the notation 𝜆𝑔 for the transpose of the 𝑔 morphism and 𝜖 for the application of an exponential to

an argument.

The product and coproduct satisfy the usual commutativity, associativity, and distributivity laws.

In Figure 4 we define constructively
1
some of the terms—namely those we will use throughout this

section—that witness these laws. In Figure 4a we define in one go 𝑐𝑜𝑚—the commutativity of the

product—which is its own isomorphism and 𝑎𝑠𝑠𝑜𝑐𝑙 and 𝑎𝑠𝑠𝑜𝑐𝑟—the associativity of the product—which

are isomorphic. In Figure 4b we define 𝑑𝑖𝑠𝑡𝑙 that satisfies the distributivity of the product over the

co-product. Its isomorphism is in fact not trivial to construct and in general it may not exist. However

in a cartesian closed category where exponentials exist 𝑑𝑖𝑠𝑡𝑟 also exists. Its construction is cumbersome,

but it can be found in its entirety in Benini [5].

We recall that a functor 𝐹 maps the objects and the morphisms of a category to another such that

𝐹 (𝑖𝑑) = 𝑖𝑑 and 𝐹 (𝑓 ◦ 𝑔) = 𝐹 (𝑓 ) ◦ 𝐹 (𝑔). If 𝐹 maps the objects and morphisms of a category to other

objects and morphisms in the same category then 𝐹 is said to be an endofunctor.

4.2 BCCC𝑝𝑜 : A Natural Transformation
In Definition 4.1 we define formally BCCC𝑝𝑜

to be the composition of two natural transformations in

some bi-cartesian closed category. The two natural transformations which define BCCC𝑝𝑜
redefine

1
As we wish to implement the formalism presented in this section for it to be executable we must adopt a constructive

attitude and provide all the morphisms in terms of the fundamental ones.



𝐵 ×𝐴

𝐴 𝐴 × 𝐵 𝐵 𝐵 ×𝐶 𝐶

(𝐴 × 𝐵) ×𝐶 𝐴 × (𝐵 ×𝐶)

𝜋2
𝑐𝑜𝑚=𝜋2×𝜋1 𝜋1

𝜋1 𝜋2 𝜋1 𝜋2

𝜋1

𝜋2×1
𝜋2

𝑎𝑠𝑠𝑜𝑐𝑙=⟨𝜋1◦𝜋1,𝜋2×1⟩

𝜋1

1×𝜋1

𝜋2

𝑎𝑠𝑠𝑜𝑐𝑟=⟨1×𝜋1,𝜋2◦𝜋2 ⟩

(a) The proof that the product is commutative and as-
sociative.

𝐴 + 𝐵 (𝐴 + 𝐵) ×𝐶 𝐶

𝐴

𝐵

𝐴 ×𝐶 𝐴 ×𝐶 + 𝐵 ×𝐶 𝐵 ×𝐶

𝜋1 𝜋2

𝜄1

𝜄2
𝜄1×1

𝜋2

𝜋1

𝜄1

𝑑𝑖𝑠𝑡𝑙=[𝜄1×1,𝜄2×1]

𝜄2×1

𝜋2

𝜋1

𝜄2

(b) The proof that the product distributes over coprod-
ucts (to the left, from one side).

Fig. 4. Products and Coproducts satisfy the usual commutativity, associativity, and distributivity laws.

objects so that all their methods become objectively recursive and extend them with a lifetime tag that

enables our timely and methodic planned obsolescence model.

Definition 4.1 (BCCC𝑝𝑜 ). In the context of some category C, BCCC𝑝𝑜
is the natural transformation

𝑝𝑜 ◦ 𝜆 such that the following conditions hold:

• C is a bi-cartesian closed category,

• 𝜆 is the objectively recursive natural transformation as defined in Definition 4.3, and,

• 𝑝𝑜 is the timely planned obsolescence natural transformation as defined in Definition 4.5.

In the rest of this section we show how to derive the definition of the 𝜆 and the 𝑝𝑜 natural transfor-

mations. In the process, thanks to our constructive point of view, we not only show that 𝜆 and 𝑝𝑜 exist

and uniquely so, we also show their definition.

Before we proceed, we recall that classes can be encoded as a co-algebra: 𝑋 → 𝑇 (𝑋 ) for some

polynomial functor𝑇 [39] as defined in Definition 4.2. Intuitively, a class contains some methods, which

given some argument of type 𝐴, operate on an unobservable state 𝑋 and return either a 𝐵 without

modifying the state, or return a 𝐶 while modifying the state. In general, as a class contains multiple

methods, it is more commonly defined as the co-algebra𝑋 → ∏
𝑖≤𝑛 (𝐵𝑖 +𝐶𝑖×𝑋 )𝐴𝑖

. In this paper however,

we choose the simpler encoding 𝑋 →
( (∑

𝑖≤𝑛 𝐵𝑖
)
+
(∑

𝑖≤𝑛𝐶𝑖

)
× 𝑋

)∑
𝑖≤𝑛 𝐴𝑖

or simply 𝑋 → (𝐵 +𝐶 × 𝑋 )𝐴.
The encoding we use is bigger than the standard one and hence our results hold for structures beyond

classes. Nonetheless, our results are easily adapted to the standard encoding.

Definition 4.2 (Polynomial Functor). Given constant objects 𝐴, 𝐵, and 𝐶 , a polynomial functor 𝑇 (𝑋 )
takes the shape of (𝐵 +𝐶 × 𝑋 )𝐴.

Characterizing the Natural Transformations. The objectively recursive natural transformation 𝜆 is

the one that intuitively modify the methods that return only a value to return the same value and
the original unmodified state. Therefore, 𝜆 is the natural transformation that maps every polynomial

functor 𝑇 (𝑋 ) = (𝐵 +𝐶 × 𝑋 )𝐴 into another polynomial functor 𝑇 𝜆 (𝑋 ) = ((𝐵 +𝐶) × 𝑋 )𝐴 while leaving

every other functor untouched. Our requirement that every method of a class 𝑐 : 𝑋 → 𝑇 (𝑋 ) mapped to

𝑐𝜆 = 𝜆(𝑐) : 𝑋 → 𝑇 𝜆 (𝑋 ) return the same value and the original state if left untouched is equivalent to

demanding that Figure 5 commutes.

The timely planned obsolescence natural transformation 𝑝𝑜 maps an objectively functional class: a

class in the codomain of 𝜆, into a class whose state contains a lifetime tag while leaving everything

untouched. Formally, 𝑝𝑜 maps a co-algebra 𝑐𝜆 : 𝑋 → ((𝐵 +𝐶) × 𝑋 )𝐴 into the co-algebra 𝑐† : 𝑋 × L →



𝑋 ×𝐴 (𝑋 ×𝐴) × 𝑋

((𝐵 +𝐶) × 𝑋 )𝐴 ×𝐴 ((𝐵 +𝐶 × 𝑋 )𝐴 ×𝐴) × 𝑋

(𝐵 +𝐶) × 𝑋 (𝐵 +𝐶 × 𝑋 ) × 𝑋

𝐵 × 𝑋 +𝐶 × 𝑋 𝐵 × 𝑋 + (𝐶 × 𝑋 ) × 𝑋

𝑐𝑜𝑚 ◦ 𝑎𝑠𝑠𝑜𝑐 ◦ ⟨1,𝜋1 ⟩

𝑐𝜆×1 𝑐×1

𝜖 𝜖×1

𝑑𝑖𝑠𝑡𝑟 𝑑𝑖𝑠𝑡𝑟

[1,𝜋1 ]

Fig. 5. The characterization of the 𝜆 natural transformation

((𝐵 +𝐶) × (𝑋 × L))𝐴. Again, our requirement that the method be left untouched—with the exception

of the lifetime tag which ought to increment—can be expressed by the commuting diagram in Figure 6.

𝑋 ×𝐴 (𝑋 × L) ×𝐴 L

((𝐵 +𝐶) × 𝑋 )𝐴 ×𝐴 ((𝐵 +𝐶) × (𝑋 × L))𝐴 ×𝐴

(𝐵 +𝐶) × 𝑋 (𝐵 +𝐶) × (𝑋 × L)

𝑐𝜆×1

𝜋1×1 ^ ◦ 𝜋2 ◦ 𝜋1

𝑐†×1

𝜖 𝜖

𝜋2 ◦ 𝜋2

1×𝜋1

Fig. 6. The characterization of the 𝑝𝑜 natural transformation

Lifetimes are added to our category through the objectL. We additionally assume two newmorphisms:

0L : 1 → L and ^ : L → L where 1 is the terminal object. Intuitively, 0L is the lifetime tag indicating

no-use and the ^ morphism
2
increases the usage tag.

Defining the Natural Transformations. The main observation we use to derive the definition of 𝜆 is to

use the isomorphism 𝑑𝑖𝑠𝑡𝑙 of 𝑑𝑖𝑠𝑡𝑟 instead, which gives us the commutative diagram in Figure 7.

From this diagram we can immediately read the definition of 𝑐𝜆 to be as in Definition 4.3.

Definition 4.3. The natural transformation 𝜆 maps every functor 𝑇 (𝑋 ) = (𝐵 +𝐶 × 𝑋 )𝐴 into 𝑇 𝜆 (𝑋 ) =
((𝐵 +𝐶) × 𝑋 )𝐴 and every 𝑐 : 𝑋 → 𝑇 (𝑋 ) into 𝑐𝜆 : 𝑋 → 𝑇 𝜆 (𝑋 ) such that:

𝑐𝜆 = 𝜆 [𝜄1 × 𝜋1, 𝜄2 × 𝜋1] ◦ 𝑑𝑖𝑠𝑡 ◦ (𝜖 ◦ 𝑐) × 1 ◦ 𝑐𝑜𝑚 ◦ 𝑎𝑠𝑠𝑜𝑐 ◦ 1 × 𝜋1

Theorem 4.4. 𝑐𝜆 as defined in Definition 4.3 is the only morphism that makes Figure 5 commute.

Proof. Follows from 𝑑𝑖𝑠𝑡𝑙 and 𝑑𝑖𝑠𝑡𝑟 being isomorphic and the definition of the exponential (Figure 3c)

□

To define the 𝑝𝑜 natural transformation the same observation can be used on Figure 6 alongside a

rearrangement to collapse the right-most triangle. This yields the diagram in Figure 8.

And again, from this diagram we can read the definition of 𝑐† to be as in Definition 4.5

2
We borrow this morphism from Linear Temporal Logic.



𝑋 ×𝐴 (𝑋 ×𝐴) × 𝑋

((𝐵 +𝐶) × 𝑋 )𝐴 ×𝐴 ((𝐵 +𝐶 × 𝑋 )𝐴 ×𝐴) × 𝑋

(𝐵 +𝐶) × 𝑋 (𝐵 +𝐶 × 𝑋 ) × 𝑋

𝐵 × 𝑋 +𝐶 × 𝑋 𝐵 × 𝑋 + (𝐶 × 𝑋 ) × 𝑋

𝑐𝑜𝑚 ◦ 𝑎𝑠𝑠𝑜𝑐 ◦ 1×𝜋1

𝑐𝜆×1 𝑐×1

𝜖 𝜖×1

𝑑𝑖𝑠𝑡[𝜄1×1,𝜄2×1]

[1,𝜋1 ]

Fig. 7. The defining diagram of 𝜆.

(𝑋 × L) ×𝐴 (𝑋 ×𝐴) × L

((𝐵 +𝐶) × (𝑋 × L))𝐴 ×𝐴 (((𝐵 +𝐶) × 𝑋 )𝐴 ×𝐴) × L

(𝐵 +𝐶) × (𝑋 × L) ((𝐵 +𝐶) × 𝑋 ) × L

𝑎𝑠𝑠𝑜𝑐𝑙 ◦ 1×𝑐𝑜𝑚 ◦ 𝑎𝑠𝑠𝑜𝑐𝑟

𝑐†×1 𝑐𝜆×1

𝜖 𝜖×^

𝑎𝑠𝑠𝑜𝑐𝑟

Fig. 8. The defining diagram of 𝑝𝑜

Definition 4.5. The natural transformation 𝑝𝑜 maps every functor 𝑇 𝜆 (𝑋 ) = ((𝐵 + 𝐶) × 𝑋 )𝐴 into

𝑇 † (𝑋 ) = ((𝐵 +𝐶) × (𝑋 × L))𝐴 and every 𝑐𝜆 : 𝑋 → 𝑇 𝜆 (𝑋 ) into 𝑐† : 𝑋 × L → 𝑇 † (𝑋 ) such that:

𝑐† = 𝜆 𝑎𝑠𝑠𝑜𝑐𝑟 ◦ (𝜖 ◦ 𝑐𝜆) × ^ ◦ 𝑎𝑠𝑠𝑜𝑐𝑙 ◦ 1 × 𝑐𝑜𝑚 ◦ 𝑎𝑠𝑠𝑜𝑐𝑟
Theorem 4.6. 𝑐† as defined in Definition 4.5 is the only morphism that makes Figure 6 commute.

Proof. Follows from the definition of the exponential (Figure 3c). □

5 JGEORGE: AN IMPLEMENTATION FOR THE JAVA VIRTUAL MACHINE
As described in Section 3, jGeorge targets class files executable on the Java Virtual Machine (JVM) and

modifies them to add an integer field, _uses, a method, _slowDown, and a method call for every method.

In particular, the _slowDown method increments the _uses counter and starts a busy loop that

terminates after _uses nanoseconds.

jGeorge targets the JVM as we believe it to be the natural target of a system like ours as it is the only

(virtual) machine that we are aware of that treats objects as first-class values. jGeorge also targets class

file executables as opposed to Java code for two reasons: first, it lends planned obsolescence to other

JVM languages such as Scala, Clojure, or Jython for free. The second reason is more social: we wish to

remain faithful to the design principles of the Java ecosystem: the Java compiler ought to be as simple

as possible while the JVM ought to do all the heavy-lifting [30]. As we did not want to modify some

given JVM’s implementation we followed the instrumentation path to also allow for programs endowed

with planned obsolescence to run on any JVM. The added bonus that this achieves is that programmers

and library developers can run jGeorge on their source code once and distribute the binaries without

burdening downstream consumers on injecting planned obsolescence.



The choice of units, the nanoseconds, was chosen empirically: We originally chose the microsecond,

alas, many programs proved to take a considerable amount of time spanning hours and days on one

occasion! To measure nanoseconds we use standard long nanoTime() method of System [70] which is

available since Java 1.5. As a consequence, jGeorge has been developed with Java 1.5+ in mind. Moreover,

nanoTime()’s Java documentation point out that under some circumstances unexpected results may be

observed which would spawn a bug in jGeorge. Particularly:

Differences in successive calls that span greater than approximately 292 years (263

nanoseconds) will not correctly compute elapsed time due to numerical overflow. [53]

jGeorge makes no effort into correctly handling successive calls to nanoTime() spanning more than 292

years even though, under planned obsolescence, this may be likely. We leave this as future work for the

community to contribute.

jGeorge is implemented in a single Rust program with dependencies only on std::string, std::str,

std::fs, and std::env over 860 lines. The program includes a parser for the binary format as docu-

mented in Chapter 4 of the JVM specification [54], code to perform the three injections mentioned

earlier, and the necessary logic to adapt the type verification frames of every method.

The jGeorge binary accepts two command-line arguments: the class executable which must be

modified and, optionally, the severity of the planned obsolescence: a multiplier for _uses with a default

value of one. All the reported experiments in this paper use the default value.

5.1 Source Code and Data Availability
jGeorge and the source code necessary to run the evaluation in Section 6 are available under an open-

source license and published on https://gitlab.com/gzakhour/jgeorge. In particular Appendix A includes

the Rust source code of jGeorge formatted to fit on a single page. We took great care in simplifying the

onboarding of fellow academics and artifact reviewers.

jGeorge can be compiled by executing rustc jGeorge.rs to produce the executable—on Linux. There

is additionally a run.sh Bourne Again SHell—bash—script which reruns the case studies in Section 6.

6 EVALUATION
In this section we evaluate jGeorge empirically. Our evaluation is guided towards an answer to the

following research questions:

RQ1 How applicable is jGeorge?

RQ2 How effective is jGeorge?

RQ3 How are different programming paradigms affected by planned obsolescence?

RQ4 How is the user-experience affected by planned obsolescence?

We answer the research questions in the context of four projects executable on the Java Virtual

Machine. Three of these codebases are existing real-world projects, and a fourth codebase which we

have written in two styles. We elaborate on each codebase in the following.

jEd. jEd is a subset of the ed text editor which we have rewritten in Java in an imperative style in a

single ImperativeEd.java file. The ed text editor was originally developed in 1969 by Ken Thompson

who developed it for the purpose of developing the UNIX operating system [16].

We have used jEd to modify its source code so that it becomes written in the objectively recursive style,

FunctionalEd.java, as described in Section 3 and Definition 4.3. We recorded every interaction made

with jEd to rewrite it and produced a trace of 1,387 instructions which can be automatically replayed to

https://gitlab.com/gzakhour/jgeorge


Without Planned Obsolescence With Planned Obsolescence

ImperativeEd 241.16 ms 8328.92 ms

FunctionalEd 265.00 ms 347.80 ms

Table 1. Time to apply the rewrites from ImperativeEd to FunctionalEd using jEd

reproduce the objectively recursive implementation. In this case study we benchmark the two variants

against eachother and against their timely and methodic planned obsolescence modifications.

The results are in Table 1. They show that FunctionalEd.java can be produced in roughly 250

milliseconds without planned obsolescence using both the imperative and functional implementation.

Unsurprisingly, when planned obsolescence is enabled, the imperative implementation’s balloons up: it

takes eight seconds to reproduce FunctionalEd.java. Surprisingly though, the objectively functional

implementation takes only 350 milliseconds thanks to its single use policy, massively outperforming

the imperative implementation.

Propel. Propel is an automated inductive theorem prover developed by Zakhour et. al [76, 77] that

is written in Scala that can verify algebraic properties of purely-functional Scala code. For example it

can prove that addition is commutative and associative, or that the “pair-wise” operation parametrized

over some function is commutative, associative, and idempotent (or any combination) whenever its

parametrized function is commutative, associative, and idempotent (or any combination respectively).

Using Scala native, Propel is normally distributed as a native binary. However as it, and its dependencies,

are written exclusively in Scala we only compile it as is standard to the JVM.

Propel comes with 128 benchmark programs out of the box including a selection from the TIP (Tons

of Inductive Proofs) benchmark [12], a few CRDTs (Conflict-free Replicated Data Types) [59], and some

type-class laws [35, 73]. In this evaluation we compare Propel against itself with planned obsolescence

enabled on its provided benchmarks.

We plot the results in Figure 9 where every point is a theorem from the Propel benchmark. The x-axis

is the time required to be prove the theorem on the Java Virtual Machine and the y-axis is the time

required to prove it on the JVM with planned obsolescence enabled. The diagonal line is the 𝑦 = 𝑥 line.

It is clear that most data points are relatively close to that diagonal but still above it while a few others

are way higher, showing that jGeorge does indeed implement planned obsolescence. Surprisingly, upon

closer inspection, a small minority is in fact below the line, showing that planned obsolescence could

speed up the program in some cases. We examined these data points and we conjecture that these

are the theorems that are proven without back-tracking: where the recursive calls never unwind and

accumulate usage penalties.

Jayway JsonPath. Jayway JsonPath [42] is an actively developed open-source Java library imple-

menting an XPath-like query language targeting JSON documents. As of writing, JsonPath has nine

thousand stars on Github, ten releases, ninety-one contributors, and shy of two thousand forks. It is

being used by almost one hundred thousand other Github repositories.

Jayway JsonPath comes with 748 unit tests executed via JUnit. We measure the effects of timely and

methodic planned obsolescence on Jayway JsonPath by comparing JUnit’s test execution statistics on it

and on the version with planned obsolescence enabled.

We plot the results in Figure 10 in a scatter plot similar to Propel’s report. The effects of planned

obsolescence on the test runner are also similar to Propel’s: almost all points are above the diagonal

with the majority relatively close to the diagonal. Moreover, a very small minority of the tests are faster

when executed with planned obsolescence. The difference with respect to Propel though is that many

more test cases are way above the diagonal.
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Fig. 9. Time to prove a theorem with Propel. Every point is a theorem.
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Fig. 10. Time to execute the JsonPath tests. Every point is a test.

FizzBuzzEnterpriseEdition. FizzBuzzEnterpriseEdition [13] is an open-source Java application that

aims at implementing all the best practices from enterprise software around a simple and small logic:

that of FizzBuzz, the well known interview question [69]. FizzBuzzEnterpriseEdition has twenty-three

thousand Github stars, seven hundred forks, and thirty contributors. We use FizzBuzzEnterpriseEdition

for multiple reasons: first, we use it to study the effects of timely and methodic planned obsolescence

on enterprise software, second, FizzBuzzEnterpriseEdition uses Spring Boot, a popular Java framework

and a hallmark of mature and enterprise software which we also wish to evaluate.
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Fig. 11. Time to compute the FizzBuzz sequence. Every point is an input number.

It is worth relating that not one case terminated within twenty hours in our evaluation of FizzBuzzEn-

terpriseEdition when we applied planned obsolescence to the class files of Spring Boot. Thus, in this

case study, we limit the reporting to FizzBuzzEnterpriseEdition proper. We have not investigated why

Spring Boot performs so poorly under planned obsolescence.

The results are presented in Figure 11 similarly to Propel’s and JsonPath’s. Unlike the other reports,

there are no data points which are faster under planned obsolescence.

The results of the experiments on the four use cases described earlier help us answer the original

research questions. We elaborate on these answers in the remainder of this section.

RQ1: How applicable is jGeorge? jGeorge is widely applicable to the Java Virtual Machine ecosystem.

That we were able to run modified Spring Boot applications and Scala applications relying on the Scala

runtime answer the question with the positive.

RQ2: How effective is jGeorge? jGeorge effectively degrades the runtime of multi-use objects. With

the exception of a very small set of theorems in Propel and tests in JsonPath, jGeorge successfully

degraded the runtime with varying severity.

RQ3: How are different programming paradigms affected by planned obsolescence? The jEd

case study demonstrate that the objectively functional paradigm as described in Section 3 is hardly

affected by planned obsolescence thanks to its single use property. On the other hand, the imperative

paradigm suffers greatly.

Moreover, as Propel is written in Scala, it can be said to be more functional than JsonPath that is

written in an enterprise-friendly object-oriented paradigm. In Figure 9 we see many theorems close to

the diagonal while a few are higher, on the other hand in Figure 10 we see that the amount of tests that

are much higher above the diagonal is significant. This additionally supports our claim.

RQ4: How is the user-experience affected by planned obsolescence? In general, the user experience

is degraded which contributes positively to planned obsolescence. Nonetheless, the user need not

experience this degradation. If a program is implemented in an objectively functional paradigm, i.e.



when the programmer engages with planned obsolescence and adopts single use, creating and destroying

objects frequently, the user is not made aware of planned obsolescence through experience.

7 RELATEDWORKS
While we are the first to propose a dynamic semantics of lifetimes as planned obsolescence, the latter

is not new to software systems. In other words, neither degradation of the runtime is new, nor its

deliberateness. In this section, we summarize the existing litterature on these lines of work.

Planned Obsolescence Guides for Technology. The first “guide” to obsolescence in technology is due

to Arthur Sloane. His decision to redesign General Motor’s cars yearly has influenced almost every

technology subsequently. From his decision in the twenties we can trace a line into yearly fashions such

as the release cycle of the Apple iPhone.

Nonetheless, Sloane’s decisions are hardly guides, but rather policies. The original guide to planned

obsolescence is, as mentioned in Section 2 due to J. George Frederick [27], the namesake of jGeorge.

From his foundational essay a slew of papers was written about the positivity of planned obsolescence on

technological obsolescence: the latter is drastically slowed down or even halted without the former [22].

Waldman [74] argues that monopolies investing in research and development of technologies is an

existential threat—to the monopoly—if planned obsolescence is not baked in the technologies it is

developing and researching. That last point is corroborated by Grout and Park [32] and extended, not

only to monopolies, but to any company in a competitive market. Strausz [65] argues that planned

obsolescence is generally good, for both the producer and the consumer. Since it encourage frequent

repurchase and frequent redevelopment, planned obsolescence creates a tight feedback loop in which

customers can communicate back their opinions on whether the redeveloped product has improved or

regressed in quality. Thus, just as a shorter software life cycle aids in the development of a high-quality

software—as popularized by the Agile manifesto for software [26]—a shorter production–consumption

cycle aids in the development of a high-quality hardware.

Obsolescence in Software. Software goes obsolete everyday for a myriad of reasons. The most common

being that a software loses its user base, either because the software’s host—the hardware—being no

longer relevant or because a better software has been developed. This mode of obsolescence is in line

with technological obsolescence as we describe it in Section 2.

Nonetheless occurrences of deliberate obsolescence of software, if not documented, are suspected. For

example, in 2018, the Italian Government opened an investigation into Apple and Samsung about their

deliberate use of degradation in the software as a means of demonstrating a non-existing degradation

in the hardware [28]. In 2014, Epson, HP, and Canon have been accused of using software that would

refuse to print if the cartridge inks were not replaced [28]. Recently, on March 5th 2025, Cory Doctorow

penned a piece about Brother starting to engage in the very same practice that its competitors are

accused of [18]. These examples however use software degradation as a means to an end of hardware

degradation and not as an end as we have done.

Software rot is a well-observed phenomenon in the developer culture [38]. But software rot is

accidental. An example of deliberate software obsolescence comes from 2016: after a heated argument

between a single developer and a software company which dragged in a package manager, who sided

with the software company, Azer Koçulu, in protest, unpublished his 11-line long left-pad project from

the package manager which lead to major software, such as Airbnb and Facebook, breaking [10].

Jang et al. [40] explore other vectors that could make software obsolete. For example, the deliberate

choice of the developer depending on a cloud provider or a third party dependency, accelerate the

eventuality of obsolescence of the software.



Technofeudalism and Enshittification. While Varoufakis’ Technofeudalism [72] and Doctorow’s En-

shittification [17] can be considered as technological guides for planned obsolescence, we choose to

discuss them separately.

Varoufakis’s main observation is that a few companies such as Amazon and Microsoft own the digital

landscape, and can thus enforce a large cloud rent fee, upwards of 40% to digital platforms, which must

trickle the fees down unto their users. Technofeudalism is thus the metaphor that these few companies

are equivalent to medieval Europe’s feudal lords and the platforms are equivalent to the lord’s vassals.

Here, Doctorow’s Enshittification principle kicks in. In particular, it applies to “platforms” such as

Facebook, TikTok, Instagram, etc... which can be reduced down to four components: the software, the

software’s owner—often a company, the software’s users, and crucially, the company’s stakeholders

who have an invisible hand into the decisions done by the company and hence into the software thanks

to Conway’s Law [14]. In order to grow the software, its owners appease the software’s users. Then, in

order to grow the software more, the owners select a small subset of the users: the business users, to

appease. However, at this point, large value is attached to the software. To appease the stakeholders,

the owners must abuse their users, business users included. At this stage, Doctorow’s enshittification

principle kicks in, and the platform, i.e. the software, “begins to die”.
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A JGEORGE RUST SOURCE CODE3

1 macro_rules! get_n_bytes { ($bytes:expr, $i:expr, $n:expr, $t:ty) => {{ if $i+ 115 descriptor_index = parser. u2()?; Ok(NameAndType { name_index, descriptor_index 229 parser. u1())? }, })} else { return Err(format!("Attribute's name must be a
2 $n - 1 < $bytes. len() { let res: $t = (0 .. $n). fold(0, |r, j| r. 116 }) }, 15 => { let reference_kind = parser. u1()?; let reference_index = parser 230 utf8 string in the constant pool")); } } fn dump(& self, buf:& mut Vec<u8>) {
3 overflowing_shl(8). 0+ ($bytes[$i+ j] as $t)); $i += $n; Ok(res) } else { 117 . u2()?; Ok(MethodHandle { reference_kind, reference_index }) }, 16 => { let 231 match self { Attribute:: Other { attribute_name_index, attribute_length, bytes
4 Err(format!("unexpected EOF: expected at least {} byte(s)", $n)) } }}; } 118 descriptor_index = parser. u2()?; Ok(MethodType { descriptor_index }) } 17 => { 232 } => { extend_with!(buf, attribute_name_index, 2); extend_with!(buf,
5 macro_rules! parse_many { ($num:expr, $parser:expr) => { (0 .. $num). map(|_| 119 let bootstrap_method_attr_index = parser. u2()?; let name_and_type_index = 233 attribute_length, 4); buf. extend(bytes. clone()); }, Attribute:: StackMapTable
6 $parser). collect:: <Result<Vec<_>, _>>() }} macro_rules! extend_with { 120 parser. u2()?; Ok(Dynamic { bootstrap_method_attr_index, name_and_type_index }) 234 { attribute_name_index, attribute_length, entries } => { extend_with!(buf,
7 ($buf:expr, $val:expr, $n:expr) => {{ let bytes: Vec<u8> = Vec:: from($val. 121 }, 18 => { let bootstrap_method_attr_index = parser. u2()?; let 235 attribute_name_index, 2); extend_with!(buf, attribute_length, 4);
8 to_be_bytes()); assert!(bytes. len() >= $n); $buf. extend(bytes[bytes. len()-$n 122 name_and_type_index = parser. u2()?; Ok(InvokeDynamic { 236 extend_with!(buf, entries. len(), 2); for entry in entries { entry. dump(buf);
9 .. ]. into_iter()); }}; } struct Parser { index: usize, bytes: Vec<u8> } impl 123 bootstrap_method_attr_index, name_and_type_index }) }, 19 => Ok(Module { 237 } }, Attribute:: LocalVariableTable { attribute_name_index, attribute_length,
10 Parser { fn from(bytes: Vec<u8>) -> Parser { Parser { index: 0, bytes } } fn 124 name_index: parser. u2()? }), 20 => Ok(Package { name_index: parser. u2()? }), 238 local_variable_table } => { extend_with!(buf, attribute_name_index, 2);
11 u1(& mut self) -> Result<u8, String> { get_n_bytes!(self. bytes, self. index, 1 125 b => Err(format!("Invalid constant pool tag: {b}")), } } fn dump(& self, buf:& 239 extend_with!(buf, attribute_length, 4); extend_with!(buf, local_variable_table
12 , u8) } fn u2(& mut self) -> Result<u16, String> { get_n_bytes!(self. bytes, 126 mut Vec<u8>) { use ConstantPoolEntry:: *; match self { InvalidUtf8 { bytes } => 240 . len(), 2); for entry in local_variable_table { entry. dump(buf); } },
13 self. index, 2, u16) } fn u4(& mut self) -> Result<u32, String> { 127 { extend_with!(buf, 1u8, 1); extend_with!(buf, bytes. len(), 2); buf. 241 Attribute:: Code { attribute_name_index, attribute_length, max_stack,
14 get_n_bytes!(self. bytes, self. index, 4, u32) } } struct Class { 128 extend(bytes); }, ValidUtf8 { value } => { extend_with!(buf, 1u8, 1); 242 max_locals, code, exception_table, attributes } => { extend_with!(buf,
15 minor_version: u16, major_version: u16, constant_pool: Vec<ConstantPoolEntry>, 129 extend_with!(buf, value. len(), 2); buf. extend(value. as_bytes()); }, Integer 243 attribute_name_index, 2); extend_with!(buf, attribute_length, 4);
16 access_flags: u16, this_class: u16, super_class: u16, interfaces: Vec<u16>, 130 { value } => { extend_with!(buf, 3u8, 1); extend_with!(buf, value, 4); }, Float 244 extend_with!(buf, max_stack, 2); extend_with!(buf, max_locals, 2);
17 fields: Vec<Field>, methods: Vec<Method>, attributes: Vec<Attribute>, } impl 131 { value } => { extend_with!(buf, 4u8, 1); extend_with!(buf, value, 4); }, Long 245 extend_with!(buf, code. len(), 4); buf. extend(code. clone()); extend_with!(buf
18 Class { fn from_parser(parser:& mut Parser) -> Result<Self, String> { let magic 132 { value } => { extend_with!(buf, 5u8, 1); extend_with!(buf, value, 8); }, 246 , exception_table. len(), 2); for entry in exception_table { entry. dump(buf); }
19 = parser. u4()?; if magic != 0xCAFEBABE { return Err(format!("magic is wrong: 133 Double { value } => { extend_with!(buf, 6u8, 1); extend_with!(buf, value, 8); } 247 extend_with!(buf, attributes. len(), 2); for attr in attributes { attr.
20 expected 0xcafebabe, found 0x{magic:x}")); } let minor_version = parser. u2()? 134 , Class { name_index } => { extend_with!(buf, 7u8, 1); extend_with!(buf, 248 dump(buf); } }, } } } #[derive(Debug)] struct ExceptionTableEntry { start_pc:
21 ; let major_version = parser. u2()?; let constant_pool_size = parser. u2()?; let 135 name_index, 2); }, String { string_index } => { extend_with!(buf, 8u8, 1); 249 u16, end_pc: u16, handler_pc: u16, catch_type: u16, } impl ExceptionTableEntry
22 mut constant_pool = Vec:: with_capacity(constant_pool_size as usize); 136 extend_with!(buf, string_index, 2); }, Fieldref { class_index, 250 { fn from_parser(parser:& mut Parser) -> Result<Self, String> {
23 constant_pool. push(ConstantPoolEntry:: Invalid); let mut index = 1; while 137 name_and_type_index } => { extend_with!(buf, 9u8, 1); extend_with!(buf, 251 Ok(ExceptionTableEntry { start_pc: parser. u2()?, end_pc: parser. u2()?,
24 index < constant_pool_size { constant_pool. push(ConstantPoolEntry:: 138 class_index, 2); extend_with!(buf, name_and_type_index, 2); }, Methodref { 252 handler_pc: parser. u2()?, catch_type: parser. u2()?, }) } fn dump(& self, buf:
25 from_parser(parser)?); if let Some(ConstantPoolEntry:: Long { .. }) | 139 class_index, name_and_type_index } => { extend_with!(buf, 10u8, 1); 253 & mut Vec<u8>) { extend_with!(buf, self. start_pc, 2); extend_with!(buf, self.
26 Some(ConstantPoolEntry:: Double { .. }) = constant_pool. last() { constant_pool 140 extend_with!(buf, class_index, 2); extend_with!(buf, name_and_type_index, 2); } 254 end_pc, 2); extend_with!(buf, self. handler_pc, 2); extend_with!(buf, self.
27 . push(ConstantPoolEntry:: Invalid); index += 2; } else { index += 1; } } let 141 , InterfaceMethodref { class_index, name_and_type_index } => { extend_with!(buf 255 catch_type, 2); } } #[derive(Clone, Debug)] enum StackMapFrame { SameFrame {
28 class = Class { minor_version, major_version, access_flags: parser. u2()?, 142 , 11u8, 1); extend_with!(buf, class_index, 2); extend_with!(buf, 256 offset_delta: u8 }, SameLocals1StackItemFrame { offset_delta: u8, stack:
29 this_class: parser. u2()?, super_class: parser. u2()?, interfaces: 143 name_and_type_index, 2); }, NameAndType { name_index, descriptor_index } => { 257 VerificationType }, SameLocals1StackItemFrameExtended { offset_delta: u16,
30 parse_many!(parser. u2()?, parser. u2())?, fields: parse_many!(parser. u2()?, 144 extend_with!(buf, 12u8, 1); extend_with!(buf, name_index, 2); extend_with!(buf 258 stack: VerificationType }, ChopFrame { frame_type: u8, offset_delta: u16 },
31 Field:: from_parser(parser,& constant_pool))?, methods: parse_many!(parser. 145 , descriptor_index, 2); }, MethodHandle { reference_kind, reference_index } => { 259 SameFrameExtended { offset_delta: u16 }, AppendFrame { frame_type: u8,
32 u2()?, Method:: from_parser(parser,& constant_pool))?, attributes: 146 extend_with!(buf, 15u8, 1); extend_with!(buf, reference_kind, 1); 260 offset_delta: u16, locals: Vec<VerificationType> }, FullFrame { offset_delta:
33 parse_many!(parser. u2()?, Attribute:: from_parser(parser,& constant_pool))?, 147 extend_with!(buf, reference_index, 2); }, MethodType { descriptor_index } => { 261 u16, locals: Vec<VerificationType>, stack: Vec<VerificationType> } } impl
34 constant_pool, }; if parser. index != parser. bytes. len() { 148 extend_with!(buf, 16u8, 1); extend_with!(buf, descriptor_index, 2); }, Dynamic 262 StackMapFrame { fn from_parser(parser:& mut Parser) -> Result<Self, String> {
35 Err(format!("[Class] Exptected EOF, {} bytes left", parser. bytes. len() - 149 { bootstrap_method_attr_index, name_and_type_index } => { extend_with!(buf, 263 use StackMapFrame:: *; Ok(match parser. u1()? { c if c <= 63 => SameFrame {
36 parser. index)) } else { Ok(class) } } fn dump(& self) -> Vec<u8> { let mut buf 150 17u8, 1); extend_with!(buf, bootstrap_method_attr_index, 2); extend_with!(buf, 264 offset_delta: c }, c if 64 <= c&& c <= 127 => SameLocals1StackItemFrame {
37 = Vec:: from([ 0xCA, 0xFE, 0xBA, 0xBE ]); extend_with!(buf, self. minor_version 151 name_and_type_index, 2); }, InvokeDynamic { bootstrap_method_attr_index, 265 offset_delta: c - 64, stack: VerificationType:: from_parser(parser)? }, 247 =>
38 , 2); extend_with!(buf, self. major_version, 2); extend_with!(buf, self. 152 name_and_type_index } => { extend_with!(buf, 18u8, 1); extend_with!(buf, 266 SameLocals1StackItemFrameExtended { offset_delta: parser. u2()?, stack:
39 constant_pool. len(), 2); for cp_item in& self. constant_pool { cp_item. dump( 153 bootstrap_method_attr_index, 2); extend_with!(buf, name_and_type_index, 2); }, 267 VerificationType:: from_parser(parser)? }, c if 248 <= c&& c <= 250 =>
40 & mut buf); } extend_with!(buf, self. access_flags, 2); extend_with!(buf, self. 154 Module { name_index } => { extend_with!(buf, 19u8, 1); extend_with!(buf, 268 ChopFrame { frame_type: c, offset_delta: parser. u2()? }, 251 =>
41 this_class, 2); extend_with!(buf, self. super_class, 2); extend_with!(buf, self 155 name_index, 2); }, Package { name_index } => { extend_with!(buf, 20u8, 1); 269 SameFrameExtended { offset_delta: parser. u2()? }, c if 252 <= c&& c <= 254 =>
42 . interfaces. len(), 2); for interface in& self. interfaces { extend_with!(buf, 156 extend_with!(buf, name_index, 2); }, Invalid => {} } } } #[derive(Debug)] 270 AppendFrame { frame_type: c, offset_delta: parser. u2()?, locals:
43 interface, 2); } extend_with!(buf, self. fields. len(), 2); for field in& self 157 struct Field { access_flags: u16, name_index: u16, descriptor_index: u16, 271 parse_many!(c-251, VerificationType:: from_parser(parser))? }, 255 => FullFrame
44 . fields { field. dump(& mut buf); } extend_with!(buf, self. methods. len(), 2) 158 attributes: Vec<Attribute>, } impl Field { fn from_parser(parser:& mut Parser, 272 { offset_delta: parser. u2()?, locals: parse_many!(parser. u2()?,
45 ; for method in& self. methods { method. dump(& mut buf); } extend_with!(buf, 159 constant_pool:& Vec<ConstantPoolEntry>) -> Result<Self, String> { Ok(Field { 273 VerificationType:: from_parser(parser))?, stack: parse_many!(parser. u2()?,
46 self. attributes. len(), 2); for attr in& self. attributes { attr. dump(& mut 160 access_flags: parser. u2()?, name_index: parser. u2()?, descriptor_index: 274 VerificationType:: from_parser(parser))?, }, c => Err(format!("Stack frame of
47 buf); } buf } fn cp_entry(& mut self, entry: ConstantPoolEntry) -> u16 { self. 161 parser. u2()?, attributes: parse_many!(parser. u2()?, Attribute:: 275 type {c} is not yet defined in the spec"))?, }) } fn dump(& self, buf:& mut
48 constant_pool. iter(). position(|item| *item == entry). unwrap_or_else(|| { let 162 from_parser(parser, constant_pool))? }) } fn dump(& self, buf:& mut Vec<u8>) { 276 Vec<u8>) { use StackMapFrame:: *; match self { SameFrame { offset_delta } => {
49 index = self. constant_pool. len(); self. constant_pool. push(entry); index }) 163 extend_with!(buf, self. access_flags, 2); extend_with!(buf, self. name_index, 277 extend_with!(buf, offset_delta, 1); }, SameLocals1StackItemFrame { offset_delta
50 as u16 } fn cp_utf8(& mut self, name:& str) -> u16 { self. 164 2); extend_with!(buf, self. descriptor_index, 2); extend_with!(buf, self. 278 , stack } => { extend_with!(buf, offset_delta+ 64, 1); stack. dump(buf); },
51 cp_entry(ConstantPoolEntry:: ValidUtf8 { value: name. to_string() }) } fn 165 attributes. len(), 2); for attr in& self. attributes { attr. dump(buf); } } } 279 SameLocals1StackItemFrameExtended { offset_delta, stack } => { extend_with!(buf
52 enable_planned_obsolescence(& mut self, severity: u8) { use ConstantPoolEntry 166 #[derive(Debug)] struct Method { access_flags: u16, name_index: u16, 280 , 247u8, 1); extend_with!(buf, offset_delta, 2); stack. dump(buf); }, ChopFrame
53 :: *; if self. access_flags& (0x0200 | 0x1000 | 0x2000 | 0x4000 | 0x8000) > 0 { 167 descriptor_index: u16, attributes: Vec<Attribute>, } impl Method { fn 281 { frame_type, offset_delta } => { extend_with!(buf, frame_type, 1);
54 return } let [uses_field_hi, uses_field_lo] = { let name_index = self. 168 from_parser(parser:& mut Parser, constant_pool:& Vec<ConstantPoolEntry>) -> 282 extend_with!(buf, offset_delta, 2); }, SameFrameExtended { offset_delta } => {
55 cp_utf8("_uses"); let descriptor_index = self. cp_utf8("I"); let 169 Result<Self, String> { Ok(Method { access_flags: parser. u2()?, name_index: 283 extend_with!(buf, 251u8, 1); extend_with!(buf, offset_delta, 2); }, AppendFrame
56 name_and_type_index = self. cp_entry(NameAndType { name_index, descriptor_index 170 parser. u2()?, descriptor_index: parser. u2()?, attributes: parse_many!(parser 284 { frame_type, offset_delta, locals } => { extend_with!(buf, frame_type, 1);
57 }); self. cp_entry(Fieldref { class_index: self. this_class, 171 . u2()?, Attribute:: from_parser(parser, constant_pool))?, }) } fn dump(& self, 285 extend_with!(buf, offset_delta, 2); for local in locals { local. dump(buf); } }
58 name_and_type_index }). to_be_bytes() }; { let name_index = self. 172 buf:& mut Vec<u8>) { extend_with!(buf, self. access_flags, 2); extend_with!(buf 286 , FullFrame { offset_delta, locals, stack } => { extend_with!(buf, 255u8, 1);
59 cp_utf8("_uses"); let descriptor_index = self. cp_utf8("I"); self. fields. 173 , self. name_index, 2); extend_with!(buf, self. descriptor_index, 2); 287 extend_with!(buf, offset_delta, 2); extend_with!(buf, locals. len(), 2); for
60 push(Field { access_flags: 1, name_index, descriptor_index, attributes: vec![] 174 extend_with!(buf, self. attributes. len(), 2); for attr in& self. attributes { 288 local in locals { local. dump(buf); } extend_with!(buf, stack. len(), 2); for
61 }) } let [slowdown_method_hi, slowdown_method_lo] = { let name_index = self. 175 attr. dump(buf); } } fn enable_planned_obsolescence(& mut self, constant_pool: 289 entry in stack { entry. dump(buf); } } } } fn covering_extra(& self, num_bytes:
62 cp_utf8("_slowDown"); let descriptor_index = self. cp_utf8("()V"); let 176 & Vec<ConstantPoolEntry>, slowdown_method_hi: u8, slowdown_method_lo: u8 ) -> 290 u16) -> (StackMapFrame, u16) { use StackMapFrame:: *; match self. clone() {
63 name_and_type_index = self. cp_entry(NameAndType { name_index, descriptor_index 177 Option<()> { use Attribute:: *; if self. access_flags == 0 || self. 291 SameFrame { offset_delta } => if num_bytes+ (offset_delta as u16) <= 63 {
64 }); self. cp_entry(Methodref { class_index: self. this_class, 178 access_flags& (0x8 | 0x40 | 0x100 | 0x400 | 0x800 | 0x1000) > 0 { return None; 292 (SameFrame { offset_delta: (num_bytes as u8)+ offset_delta }, 0) } else {
65 name_and_type_index }). to_be_bytes() }; let [nano_time_method_hi, 179 } if let ConstantPoolEntry:: ValidUtf8 { value } =& constant_pool[self. 293 (SameFrameExtended { offset_delta: num_bytes+ (offset_delta as u16) }, 2) },
66 nano_time_method_lo] = { let class_index = { let name_index = self. 180 name_index as usize] { if value == "<init>" { return None; }} let Code { code, 294 SameLocals1StackItemFrame { offset_delta, stack } => if num_bytes+
67 cp_utf8("java/lang/System"); self. cp_entry(Class { name_index }) }; let 181 exception_table, attribute_length: code_attr_len, attributes: code_attrs, 295 (offset_delta as u16) <= 63 { (SameLocals1StackItemFrame { offset_delta:
68 name_index = self. cp_utf8("nanoTime"); let descriptor_index = self. 182 max_stack, .. } = self. attributes. iter_mut(). filter(|a| if let Code { .. } = 296 (num_bytes as u8)+ offset_delta, stack }, 0) } else {
69 cp_utf8("()J"); let name_and_type_index = self. cp_entry(NameAndType { 183 a { true } else { false }). next()? else { unreachable!() }; let inject_code = 297 (SameLocals1StackItemFrameExtended { offset_delta: num_bytes+ (offset_delta as
70 name_index, descriptor_index }); self. cp_entry(Methodref { class_index, 184 vec![42, 182u8, slowdown_method_hi, slowdown_method_lo]; *code_attr_len += 298 u16), stack }, 2) }, SameLocals1StackItemFrameExtended { offset_delta, stack }
71 name_and_type_index }). to_be_bytes() }; let code_name_index = self. 185 inject_code. len() as u32; assert!(inject_code. len() % 4 == 0, "We don't want 299 => { (SameLocals1StackItemFrameExtended { offset_delta: num_bytes+ offset_delta
72 cp_utf8("Code"); let stack_map_table = self. cp_utf8("StackMapTable"); for 186 to fix the 4-byte padding for tableswitch/lookupswitch"); for (i, byte) in 300 , stack }, 0) }, ChopFrame { frame_type, offset_delta } => (ChopFrame {
73 method in self. methods. iter_mut() { method. enable_planned_obsolescence(& 187 inject_code. iter(). enumerate() { code. insert(i, *byte); } *max_stack += 1; 301 frame_type, offset_delta: offset_delta+ num_bytes }, 0), SameFrameExtended {
74 self. constant_pool, slowdown_method_hi, slowdown_method_lo); } let code = 188 let stack_map_table = code_attrs. iter_mut(). filter(|a| if let StackMapTable { 302 offset_delta } => (SameFrameExtended { offset_delta: offset_delta+ num_bytes }
75 vec![ 42, 89, 180, uses_field_hi, uses_field_lo, 4, 96, 181, uses_field_hi, 189 .. } = a {true} else {false}). next(); if let Some(StackMapTable { entries: 303 , 0), AppendFrame { frame_type, offset_delta, locals } => (AppendFrame {
76 uses_field_lo, 184, nano_time_method_hi, nano_time_method_lo, 64, 42, 180, 190 frames, attribute_length: stack_map_len, .. }) = stack_map_table { let 304 frame_type, offset_delta: num_bytes+ offset_delta, locals }, 0), FullFrame {
77 uses_field_hi, uses_field_lo, 16, severity, 104, 133, 66, 184, 191 (new_frame, extra_bytes) = frames[0]. covering_extra(4); frames[0] = new_frame 305 offset_delta, locals, stack } => (FullFrame { offset_delta: num_bytes+
78 nano_time_method_hi, nano_time_method_lo, 31, 101, 33, 148, 156, 0, 6, 167, 255 192 ; *stack_map_len += extra_bytes as u32; *code_attr_len += extra_bytes as u32; 306 offset_delta, locals, stack }, 0) } } } #[derive(Clone, Debug)] enum
79 , 246, 177, ]; let code_len = code. len() as u32; let stack_map_bytes = vec![0, 193 for frame in frames. iter_mut() { match frame { StackMapFrame:: 307 VerificationType { Basic { tag: u8 }, Object { tag: u8, cpool_index: u16 },
80 2, 253, 0, 23, 4, 4, 12]; let stack_map_bytes_len = stack_map_bytes. len() as 194 SameLocals1StackItemFrame { stack, .. } | StackMapFrame:: 308 Uninitialized { tag: u8, offset: u16 }, } impl VerificationType { fn
81 u32; let method = Method { access_flags: 1, name_index: self. 195 SameLocals1StackItemFrameExtended { stack, .. } => { stack. cover_extra(4) }, 309 from_parser(parser:& mut Parser) -> Result<Self, String> { let tag = parser.
82 cp_utf8("_slowDown"), descriptor_index: self. cp_utf8("()V"), attributes: vec![ 196 StackMapFrame:: AppendFrame { locals, .. } => { for local in locals. iter_mut() 310 u1()?; if tag < 7 { Ok(VerificationType:: Basic { tag }) } else if tag == 7 {
83 Attribute:: Code { attribute_name_index: code_name_index, max_stack: 4, 197 { local. cover_extra(4) } } StackMapFrame:: FullFrame { locals, stack, .. } => 311 Ok(VerificationType:: Object { tag, cpool_index: parser. u2()? }) } else if tag
84 max_locals: 5, code, exception_table: vec![], attributes: vec![ Attribute:: 198 { for local in locals. iter_mut() { local. cover_extra(4) } for entry in stack 312 == 8 { Ok(VerificationType:: Uninitialized { tag, offset: parser. u2()? }) }
85 Other { attribute_name_index: stack_map_table, attribute_length: 199 . iter_mut() { entry. cover_extra(4) } }, _ => {} }} }; for ExceptionTableEntry 313 else { Err(format!("Unknown Verification tag {tag}")) } } fn dump(& self, buf:
86 stack_map_bytes_len, bytes: stack_map_bytes } ], attribute_length: 2+ 2+ 4+ 200 { start_pc, end_pc, handler_pc, .. } in exception_table. iter_mut() { *start_pc 314 & mut Vec<u8>) { match self { VerificationType:: Basic { tag } => { buf.
87 code_len+ 2+ 2+ (2+ 4+ stack_map_bytes_len), }] }; self. methods. push(method) 201 += inject_code. len() as u16; *end_pc += inject_code. len() as u16; *handler_pc 315 push(*tag) } VerificationType:: Object { tag, cpool_index } => { buf.
88 ; } } #[derive(Debug, PartialEq)] enum ConstantPoolEntry { InvalidUtf8 { bytes: 202 += inject_code. len() as u16; } for attr in code_attrs. iter_mut() { match attr 316 push(*tag); extend_with!(buf, cpool_index, 2); } VerificationType::
89 Vec<u8> }, ValidUtf8 { value: String }, Integer { value: i32 }, Float { value: 203 { Attribute:: LocalVariableTable { local_variable_table, .. } => { for 317 Uninitialized { tag, offset } => { buf. push(*tag); extend_with!(buf, offset,
90 f32 }, Long { value: i64 }, Double { value: f64 }, Class { name_index: u16 }, 204 LocalVariableTableEntry { start_pc, .. } in local_variable_table. iter_mut() { 318 2); } } } fn cover_extra(& mut self, num_bytes: u16) { if let VerificationType
91 String { string_index: u16 }, Fieldref { class_index: u16, name_and_type_index: 205 *start_pc += 4; } }, _ => {} }} Some(()) } } #[derive(Debug)] enum Attribute { 319 :: Uninitialized { offset, .. } = self { *offset += num_bytes; } } }
92 u16 }, Methodref { class_index: u16, name_and_type_index: u16 }, 206 Code { attribute_name_index: u16, attribute_length: u32, max_stack: u16, 320 #[derive(Clone, Debug)] struct LocalVariableTableEntry { start_pc: u16, length:
93 InterfaceMethodref { class_index: u16, name_and_type_index: u16 }, NameAndType 207 max_locals: u16, code: Vec<u8>, exception_table: Vec<ExceptionTableEntry>, 321 u16, name_index: u16, descriptor_index: u16, index: u16, } impl
94 { name_index: u16, descriptor_index: u16 }, MethodHandle { reference_kind: u8, 208 attributes: Vec<Attribute>, }, StackMapTable { attribute_name_index: u16, 322 LocalVariableTableEntry { fn from_parser(parser:& mut Parser) -> Result<Self,
95 reference_index: u16 }, MethodType { descriptor_index: u16 }, Dynamic { 209 attribute_length: u32, entries: Vec<StackMapFrame>, }, LocalVariableTable { 323 String> { Ok(LocalVariableTableEntry { start_pc: parser. u2()?, length: parser
96 bootstrap_method_attr_index: u16, name_and_type_index: u16 }, InvokeDynamic { 210 attribute_name_index: u16, attribute_length: u32, local_variable_table: 324 . u2()?, name_index: parser. u2()?, descriptor_index: parser. u2()?, index:
97 bootstrap_method_attr_index: u16, name_and_type_index: u16 }, Module { 211 Vec<LocalVariableTableEntry>, }, Other { attribute_name_index: u16, 325 parser. u2()?, }) } fn dump(& self, buf:& mut Vec<u8>) { extend_with!(buf, self
98 name_index: u16 }, Package { name_index: u16 }, Invalid, } impl 212 attribute_length: u32, bytes: Vec<u8> }, } impl Attribute { fn 326 . start_pc, 2); extend_with!(buf, self. length, 2); extend_with!(buf, self.
99 ConstantPoolEntry { fn from_parser(parser:& mut Parser) -> Result<Self, String> 213 from_parser(parser:& mut Parser, constant_pool:& Vec<ConstantPoolEntry>) -> 327 name_index, 2); extend_with!(buf, self. descriptor_index, 2); extend_with!(buf
100 { use ConstantPoolEntry:: *; match parser. u1()? { 1 => { let length = parser. 214 Result<Self, String> { use Attribute:: *; let attribute_name_index = parser. 328 , self. index, 2); } } fn run(args: Vec<String>) -> Result<(), (i32, String)> {
101 u2()?; let bytes = parse_many!(length, parser. u1())?; Ok(if let Ok(value) = 215 u2()?; let attribute_length = parser. u4()?; let attribute_name =& 329 if args. len() < 2 { return Err((1, format!("Usage: {} File. class [severity =
102 std:: string:: String:: from_utf8(bytes. clone()) { ValidUtf8 { value } } else 216 constant_pool[attribute_name_index as usize]; if let ConstantPoolEntry:: 330 1]", args[0]))) } let class_file = args[1]. clone(); use std:: str:: FromStr;
103 { InvalidUtf8 { bytes } }) }, 3 => Ok(Integer { value: parser. u4()? as i32 }) 217 ValidUtf8 { value } = attribute_name { Ok(match value. as_str() { "Code" => 331 let severity = u8:: from_str(args. get(2). unwrap_or(& format!("1"))).
104 , 4 => Ok(Float { value: f32:: from_bits(parser. u4()?) }), 5 => Ok(Long { 218 Code { attribute_name_index, attribute_length, max_stack: parser. u2()?, 332 map_err(|err| (5, format!("Could not parse severity: {err}")))?; let bytes =
105 value: (parser. u4()? as i64). overflowing_shl(32). 0+ (parser. u4()? as i64) 219 max_locals: parser. u2()?, code: parse_many!(parser. u4()?, parser. u1())?, 333 std:: fs:: read(& class_file). map_err(|err| (2, format!("Could not read
106 }), 6 => Ok(Double { value: f64:: from_bits((parser. u4()? as u64). 220 exception_table: parse_many!(parser. u2()?, ExceptionTableEntry:: 334 {class_file}: {err}")))?; let mut class = Class:: from_parser(& mut Parser::
107 overflowing_shl(32). 0+ (parser. u4()? as u64)) }), 7 => Ok(Class { name_index: 221 from_parser(parser))?, attributes: parse_many!(parser. u2()?, Attribute:: 335 from(bytes)). map_err(|err| (3, format!("Could not parse {class_file}:
108 parser. u2()? }), 8 => Ok(String { string_index: parser. u2()? }), 9 => { let 222 from_parser(parser, constant_pool))?, }, "StackMapTable" => StackMapTable { 336 {err}")))?; class. enable_planned_obsolescence(severity); std:: fs:: write(&
109 class_index = parser. u2()?; let name_and_type_index = parser. u2()?; 223 attribute_name_index, attribute_length, entries: parse_many!(parser. u2()?, 337 class_file,& class. dump()). map_err(|err| (4, format!("Could not write to
110 Ok(Fieldref { class_index, name_and_type_index }) }, 10 => { let class_index = 224 StackMapFrame:: from_parser(parser))?, }, "LocalVariableTable" | 338 {class_file}: {err}")))?; Ok(()) } fn main() { if let Err((code, message)) =
111 parser. u2()?; let name_and_type_index = parser. u2()?; Ok(Methodref { 225 "LocalVariableTypeTable" => LocalVariableTable { attribute_name_index, 339 run(std:: env:: args(). collect:: <Vec<_>>()) { eprintln!("{message}"); std::
112 class_index, name_and_type_index }) }, 11 => { let class_index = parser. u2()? 226 attribute_length, local_variable_table: parse_many!(parser. u2()?, 340 process:: exit(code) } }
113 ; let name_and_type_index = parser. u2()?; Ok(InterfaceMethodref { class_index, 227 LocalVariableTableEntry:: from_parser(parser))?, }, _ => Other {
114 name_and_type_index }) }, 12 => { let name_index = parser. u2()?; let 228 attribute_name_index, attribute_length, bytes: parse_many!(attribute_length,
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Also available in an electronic format at https://gitlab.com/gzakhour/jgeorge
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